
Establishing the European Geological Surveys Research Area
to deliver a Geological Service for Europe

Deliverable 7.2

Finished testing the system and
identifying problems

 Authors and affiliation:
Jean-Baptiste Roquencourt BRGM,
Eric Lecaude BRGM,
Jean Goncalves BRGM,
Andrej Vihtelič GeoZS,
Blaž Bahar GeoZS,
Jernej Bavdek GeoZS,
Maks Šinigoj GeoZS
Lucie Kondrová CGS,
Pavla Kramolišová CGS,
Miguel Ángel Alarcón IGME,
Héctor Sánchez IGME
Martin Hansen GEUS,
Bjarni Pjetursson GEUS,
Marianne B. Wiese GEUS,
Jonas Thyregod GEUS,
Viktor Rasmussen GEUS

[BENEFICIARY]
E-mail of lead author:
jb.roquencourt@brgm.fr

Version: 02-07-2020

This report is part of a project that has
received funding by the European
Union’s Horizon 2020 research and
innovation programme under grant
agreement number 731166.

Deliverable Data
Deliverable number D7.2
Dissemination level Public
Deliverable name Finished testing the system and identifying problem
Work package WP7, Developments (central)
Lead WP/Deliverable beneficiary GeoZS
Deliverable status
Submitted (Author(s)) 02/07/2020 Jean-Baptiste Roquencourt
Verified (WP leader) 15/07/2020 Andrej Vihtelič
Approved (Coordinator) 21/07/2020 Jørgen Tulstrup

Page 3 of 84 Revision no 6 Last saved 21/07/2020 13:17

GENERAL INTRODUCTION
This report describes the state of the European Geological Data Infrastructure (EGDI)
tests that the GeoERA Information Platform Project (GIP-P) has been able to achieve. It
also paves the way to solve the problems identified as well as improving the testing
framework.
From the user perspective the tests are based on the requirement from D2.3.2.
This deliverable was not able to achieve the finalization of the tests because its due date
in the middle of the development delivery. Therefore the scope of the document will be
limited to the already functionalities that can be accessible.
As such this document will have a new version at the end of development to increase its
coverage on the requirements from D2.3.2.
Standardisation was also a late communication process engaged with the GSPs, therefore
the second version of the document will introduce a testing framework for better
standardisation based on D3.3, and possible solution to issues based on D3.2.2.

Page 4 of 84 Revision no 6 Last saved 21/07/2020 13:17

TABLE OF CONTENTS

1. DEFINITIONS ... 7

2. INTRODUCTION .. 8

3. IDENTIFYING TESTING STRATEGY ... 9
 What is testing and why testing ... 9
 Define the strategy ... 10

3.2.1 User review .. 11
3.2.2 Prototypes .. 12
3.2.3 Static code analysis .. 12
3.2.4 Unit tests .. 13
3.2.5 Scenarios: Integration and End to End tests 13
3.2.6 Security tests .. 13
3.2.7 FAIR assessment .. 13
3.2.8 Performance testing ... 14
3.2.9 Synthesis .. 15

4. THE EGDI TECHNICAL LANDSCAPE PROVIDES A GLOBAL VISION
FOR THE EGDI ARCHITECTURE .. 16

 Web GIS .. 16
4.1.1 Introduction .. 16
4.1.2 Architecture ... 17
4.1.3 Metrics ... 18
4.1.4 Envisioned scenario for performance testing 19
4.1.5 Scalability issues .. 19
4.1.6 User review .. 21
4.1.7 Performance testing ... 21
4.1.8 Planned improvements ... 21

 Development of a search system ... 22
4.2.1 Introduction .. 22
4.2.2 Architecture ... 22
4.2.3 Metrics ... 25
4.2.4 Envisioned scenario for performance testing 25
4.2.5 Scalability issues .. 29
4.2.6 Users review .. 29
4.2.7 Performance testing ... 29
4.2.8 Planned improvements ... 31

 3D viewer... 31
 EGDI document repository search thematic application 32

4.4.1 Introduction .. 32
4.4.2 Architecture ... 32
4.4.3 Metrics ... 36
4.4.4 Envisioned scenario for performance testing 36
4.4.5 Scalability issues .. 43
4.4.6 Users review .. 43

Page 5 of 84 Revision no 6 Last saved 21/07/2020 13:17

4.4.7 Performance testing ... 45
4.4.8 Planned improvement .. 45

 MIcKA: EGDI metadata catalogue ... 45
4.5.1 Introduction .. 45
4.5.2 Architecture ... 46
4.5.3 Metrics ... 48
4.5.4 User review .. 48
4.5.5 Envisioned scenario for performance testing 51
4.5.6 Scalability issues .. 57
4.5.7 Performance testing ... 57
4.5.8 Planned improvements ... 57

 Extensions to the harvesting system .. 57
4.6.1 Introduction .. 57
4.6.2 Architecture ... 58
4.6.3 Metrics ... 59
4.6.4 Envisioned scenario for performance testing 59
4.6.5 Scalability issues .. 60
4.6.6 User review .. 60
4.6.7 Performance testing ... 60
4.6.8 Planned improvements ... 60

 Administration module .. 62
4.7.1 Introduction .. 62
4.7.2 Architecture ... 63
4.7.3 Metrics ... 64
4.7.4 Envisioned scenario for performance testing 64
4.7.5 Scalability issues .. 66
4.7.6 User review .. 67
4.7.7 Performance testing ... 67
4.7.8 Planned improvements ... 68

 Vocabulary tool ... 68
4.8.1 Introduction .. 68
4.8.2 Architecture ... 69
4.8.3 Metrics ... 69
4.8.4 Envisioned scenario for performance testing 70
4.8.5 Scalability issues .. 71
4.8.6 User review .. 71
4.8.7 Performance testing ... 71
4.8.8 Planned improvements ... 71

 Monitoring system ... 71
4.9.1 Introduction .. 71
4.9.2 Architecture ... 72
4.9.3 Scalability issues .. 72
4.9.4 User review .. 72
4.9.5 Planned improvements ... 72

5. SYNTHESIS ... 74
 Global architecture... 74

Page 6 of 84 Revision no 6 Last saved 21/07/2020 13:17

 User review .. 74
 Prototypes .. 74
 Static code analysis .. 74
 Unit test policy proposal .. 74

5.5.1 Controllers test / WS .. 74
5.5.2 Context for taking the tests .. 75

 Security tests .. 77
 FAIR assessment ... 77
 Module improvements ... 77
 Conclusion ... 77

6. ANNEX: EGDI DOCUMENT REPOSITORY FUNCTIONNALITIES 78

7. REFERENCES ... 84

Page 7 of 84 Revision no 6 Last saved 21/07/2020 13:17

1.DEFINITIONS
Application Programming Interface (API): a computing interface to a software module
or a system, that defines how other modules or systems can use it.

Functionality: the range of operations that can be run on a computer or other electronic
system.

GeoERA: Establishing the European Geological Surveys Research Area to deliver a
Geological Service for Europe.

GIP-P: GeoERA Information Platform Project.

GSP: GeoERA Scientific Project. The 14 scientific projects of the GeoERA programme.

Metadata: data that provides information about spatial and non-spatial data (e.g., purpose
of the data, time of creation, authors, etc.)

Module: an application or software that is involved in serving product.

Product: any deliverable generated by a GeoERA project that will be available via EGDI.
Projects will deliver 4 types of products.

Project vocabulary: collections of terms with short descriptions, bibliographic citations
and links to unstructured web contents used to define scientific parameters and concepts.

Page 8 of 84 Revision no 6 Last saved 21/07/2020 13:17

2.INTRODUCTION
This present deliverable is a milestone to the actual finished testing the system.
However, we could even argue that testing is an activity never finished, as we want to
continuously improve the system in regards to user requirements while maintaining its
robustness.

Our work so far was, first, to assess the scope of testing the system. The EGDI platform
is composed of several modules. How should we test them and should we test all of
them? What kind of test since every module is different and managed by teams of
different knowledge? How to maintain a coherent vision of the test?
Hence we defined a testing strategy based on the existing test, spread it across the team
and defined the potential sequel.

Then based on that shared testing strategy, we focused our attention on specific modules
of the system:

a) Web GIS
b) Search System
c) 3D viewer
d) Document repository search system
e) Metadata catalogue
f) Harvesting system
g) Vocabulary tool
h) Monitoring system

Finally, having reviewed every chosen module according to the strategy, this document
gives a global and coherent vision on the actual development of the system. We also
proposed the sequel of the present deliverable to refine the testing of the system by the
end of the project.

Page 9 of 84 Revision no 6 Last saved 21/07/2020 13:17

3.IDENTIFYING TESTING STRATEGY
 What is testing and why testing

The goal of software testing is to verify the behaviour of an application against multiple
criteria. A comparison could be made with a car: either you assess its look & feel, its
User Experience, its robustness and so on.
The testing coverage greatly depends on a matter of fact: criticality of your application
in your daily business, associated budget, time for executing the test.

Testing is often seen as a hindrance to the quickness of the development. However the
consequences can be heavy. Indeed lately a certain amount of personal information have
been leaked from poor secured web site1. In the context of GDPR such a leakage can be
disastrous for the company finance2. At a smaller scale, the later you test, the more
complex it is too find the root cause of issues, resulting in a loss of time.

Yes testing requires time, so the development team has too find a trade-off between the
consequences of not testing everything, and dealing with potential critical issues.

There are over 150 ways of testing3, however the most common can be found in the
following picture:

Figure 1: Software testing quadrant

1 https://digitalguardian.com/blog/top-10-biggest-healthcare-data-breaches-all-time
2 https://www.privacyaffairs.com/gdpr-fines/
3 https://www.guru99.com/types-of-software-testing.html

https://digitalguardian.com/blog/top-10-biggest-healthcare-data-breaches-all-time
https://www.privacyaffairs.com/gdpr-fines/
https://www.guru99.com/types-of-software-testing.html

Page 10 of 84 Revision no 6 Last saved 21/07/2020 13:17

 Define the strategy
As introduced, testing is really important for the quality of the deliverables. However a
too complicated quality process can hinder the respect of deadlines. For that reason we
defined the strategy with the following constraints:

• Test what is interesting to test
We should not test for example a database connection that others have done for us.

• Adapt to the skills of the team
GIP-P is composed of people with a wide range of knowledge from juniors to experts
with their own development culture. We will focus on developing a common approach
to testing. This will build a common knowledge base and mutual understanding,
facilitating collaboration.

• Adapt to the complexity of the product
The EGDI platform is composed of multiple modules. As these modules interact with
each other with contract interface or API, we need to define a standard vision and
understanding of every module.

• Adapt to the international team
Each module is usually developed by a core team coming from one organization. This is
effective, in giving every team a tighten scope of responsibilities. As such, the strategy
should not be disruptive for these organization.

• Adapt to the development agenda
We are in the middle of the development phase meaning that some functionalities and
products are not yet available to be technically tested or user reviewed. We need to track
them so that they will be part of the testing delivery framework.

• Adapt to the GIP-P standardization implementation process maturity
The communication with GSP in regard to the implementation of the standard is still at
its early stage. Therefore, we will not take into account D3.2.2 and D3.3 for now.

• Adapt to availabilities
We don’t want to have a shiny testing framework that would have consumed too much
human resource time which could not be followed through. Therefore, the strategy will
identify and focus on activities that will be easy to implement and could be automated
(Figure 2: Automated tests).

Page 11 of 84 Revision no 6 Last saved 21/07/2020 13:17

Figure 2: Automated tests

The strategy needs to secure an MVP framework for testing and give the GIP-P and
EGDI platform a strong basis for the follow-up of the project and the future of the EGDI
involved teams based on everyone’s knowledge.

Our assumption was that there was a lot of existing automated tests in the EGDI
development teams. That was not the case. Therefore, we reviewed the Software
Testing Quadrant, enlightened with the following approach: the strategy will as much as
possible follow the KISS principle4, and simplified to these 2 points:
a) The most important thing for the GIP-P is the satisfaction of the users, the so-called
User Experience.
b) to improve the User Experience, a lot of technical tests can be done to facilitate the
development process.

3.2.1 User review
The users are the one we are working for, therefore maintaining a close relationship is
of the essence. In the GIP Project, this relationship has been put into practice from the
very beginning and is explained in Figure 2: Work Packages and their relationships.

4 https://www.interaction-design.org/literature/article/kiss-keep-it-simple-stupid-a-design-principle

https://www.interaction-design.org/literature/article/kiss-keep-it-simple-stupid-a-design-principle

Page 12 of 84 Revision no 6 Last saved 21/07/2020 13:17

Figure 3: Work Packages and their relationships

3.2.1.1 Scheduling
As a development team, we want to avoid the tunnel effect5. And as this deliverable
marks a milestone in the development process, we will review the latest feedback from
the user. Since every module has its own timeline, and in respect to the user
requirements, the team may not have had the time or the capability yet to involve the
users. This should be done sooner rather than later and in a recurrent manner.
3.2.1.2 Users
As written above, the EGDI platform consist of multiple modules targeted at different
kind of users. The users in the context of GeoERA are first coming from the GSPs,
however some modules have been existing before GeoERA and have already
established links with their users. Therefore the teams have been or will be in touch with
all these users for them to review their modules.
3.2.2 Prototypes
Prototypes are used to demonstrate capabilities and to facilitate the dialog with users.
WP5 has identified prototypes for Data Architecture and Service Architecture. This is
out the scope of this present document version.
3.2.3 Static code analysis
As we want to improve the quality of the code delivered, we will start from the simplest
automating test to put in place shown in Figure 2 : static code analysis.

5 https://www.wethetalent.co/data-robots-ai/the-tunnel-effect-and-the-abstruse-trap/

https://www.wethetalent.co/data-robots-ai/the-tunnel-effect-and-the-abstruse-trap/

Page 13 of 84 Revision no 6 Last saved 21/07/2020 13:17

Static analysis is best described “as a method of debugging by automatically examining
source code before a program is run”6. It allows the detection at early stage of
inefficient code, and potential security issues.
3.2.4 Unit tests
Unit tests are used to ensure that the code will work as expected by the specifications.
They ensure the proper functioning of each of the sub-parts of the program (a method, a
service, ...).
This practice helps to discover faults when programming a feature and, above all, to
automatically check that malfunctions have not been introduced when changes are made
to the code of an application.
In order to be as relevant as possible, automated tests must include unit tests and not
only integration tests:

a) A unit test controls an elementary fragment composing a functionality. It is
therefore more targeted and allows to locate potential errors more easily.

b) Unit tests should not test frameworks. We know that others have done it before
us, and they should test isolated layers from each other and then, through
integration tests, the whole call chain through the architecture.

Particular attention is paid to the testing of business rules (service layer) and to the
mapping of data objects (service layer but potentially also the controller).
3.2.5 Scenarios: Integration and End to End tests
Although different in their scope, as up to now integration and End-to-End (e2e) tests
have been carried out for each module and also on the level of the whole EGDI platform
manually. Although we could work on their automation, we think it is too early to work
on this. These tests are being done regularly, and have improved the overall coherence
of the delivered software application or website.
3.2.6 Security tests
We will focus on black box security testing with penetration tools.
The realization of such a test needs to be held with great care. Laws are written to
protect the website owner therefore any attempt to misuse it or breaking attempt can be
severely punished. Therefore before performing the test you need to be granted the right
to do so.
Therefore the strategy would be to: a) transfer the knowledge on security testing to each
module teams, b) each module team performs the test, c) report the result to the project
leader and d) automatize the test.
3.2.7 FAIR assessment
Being FAIR is a journey, and we should assess the FAIRness of EGDI. There are
already existing methodologies for FAIR assessment7. As EGDI is part of the TCS
Geology of EPOS ERIC, we could benefit from EPOS active involvement in ENVRI-

6 https://www.perforce.com/blog/sca/what-static-analysis
7 https://www.rd-alliance.org/sites/default/files/Ms%20MAIN%20TEXT-%20R.%20David-
17jan2020%281%29.pdf

https://www.perforce.com/blog/sca/what-static-analysis
https://www.rd-alliance.org/sites/default/files/Ms%20MAIN%20TEXT-%20R.%20David-17jan2020%281%29.pdf
https://www.rd-alliance.org/sites/default/files/Ms%20MAIN%20TEXT-%20R.%20David-17jan2020%281%29.pdf

Page 14 of 84 Revision no 6 Last saved 21/07/2020 13:17

FAIR. EPOS has proposed a mechanism to FAIR assessment8. From that experience,
we know that FAIR Assessment requires time and we want a less complex methodology
Thus our pragmatic solution on this matter is:

a) Based on the fact that the EGDI platform is already compliant, to a certain
degree to Inspire and Standard like OGC which are FAIR by design.

b) And as GIP-P WP3 already presented to WP7.2 existing software for testing the
INSPIRE and OGC capabilities of a service we will focus on these tool first.

3.2.8 Performance testing
We envisioned the following process:

Figure 4: Performance testing process9

However while identifying the test environment we needed to understand the overall
architecture. We found that there was still some discrepancies on the environment
documentation. We also struggled to define the KPIs.
3.2.8.1 Technical architecture
Each module teams were asked to provide a common level of architecture description.
We agreed on the following information:

a) Architecture diagram
b) Hardware component
c) Software component

3.2.8.2 Metrics or KPI
So far we were not able to identify written KPIs. The reason being that the existing
modules are already working for their users, and overall the users seem satisfied.
However, we envision that there is a certain level of information that needs to be shared,
so that the new modules cope with the actual usage of the platform.
This deliverable will first capture the existing metrics for every module with a basic
layer composed of time base metrics:

a) The number of users per day (hour, year, etc.)
b) The number of requests per day (hour, year, etc.)

For a better caption of the metrics, this deliverable suggests to adopt a strategy for the
harmonization of metrics. It is suggested that WP7 in cooperation with WP5 and WP6
takes the lead on this. This deliverable suggests to start using with web analytics such
as Matomo10, and improve it with log file indexes: Elasticsearch 11or Graylog12. These
software are the de facto open source software at the deliverable writing time.

8 https://www.frontiersin.org/articles/10.3389/feart.2020.00003/full
9 https://www.guru99.com/images/performance_testing_process.png
10 https://matomo.org/
11 https://www.elastic.co/
12 https://www.graylog.org/

https://www.frontiersin.org/articles/10.3389/feart.2020.00003/full
https://www.guru99.com/images/performance_testing_process.png
https://matomo.org/
https://www.elastic.co/
https://www.graylog.org/

Page 15 of 84 Revision no 6 Last saved 21/07/2020 13:17

3.2.9 Synthesis
The strategy can be summarized by with the addition of static code analysis and FAIR
assessment.

Figure 5: Defined strategy

Page 16 of 84 Revision no 6 Last saved 21/07/2020 13:17

4. THE EGDI TECHNICAL LANDSCAPE PROVIDES A GLOBAL
VISION FOR THE EGDI ARCHITECTURE

The chapter will introduce the modules that are used by the end users to visualize data.
We will be giving a detailed representation of relevant modules, while the description of
the administration and monitoring modules will be less detailed.

 Web GIS
4.1.1 Introduction
The EGDI Web-GIS System disseminates data products and data sets as online
interactive maps including various tools to further perform data analysis. The most
current version is available as embedded maps on the project pages of https://geoera.eu
and at http://www.europe-geology.eu/

From a user-perspective, the interactive maps comprise the following key functionality:

Browse index of all available contents in EGDI
Gather more information from legends and metadata records
Subset selection using attribute filters and map interactions (mouse and touch)
Adding external map sources (WMS)
Attribute details on features (data analysis step 1)
Linking to custom data viewers on feature and data set level (data analysis step
3)
Downloading of raw data for local work (data analysis step 3)

In addition, the maps offer functionalities expected from state-of-the-art online maps:

Support for multiple screen sizes
Map navigation using location search
Map navigation using map interactions (zoom and pan)
Measuring tool for paths (m) and polygons (m2)
Change layer drawing order
Zoom to current location
Permanent link option
Fullscreen option
Rotate north option

The system is a full-stack system using client-side logic (browser), server-side logic,
and data storage.

Client-side logic Interactive web page with embedded
logic using common browser modules
like jQuery, Bootstrap and OpenLayers.
OpenLayers takes care of orchestrating
map layer contents from various sources
into a web-GIS. In addition, several

https://geoera.eu/
http://www.europe-geology.eu/

Page 17 of 84 Revision no 6 Last saved 21/07/2020 13:17

libraries are built in the scope of EGDI to
allow for more functionality.

Server-side logic The EGDI server runs a Java Tomee
application server with an EGDI
application for serving settings and
contents necessary to fill the web-GIS.
The application makes use of Mapserver
seamlessly translate layer configurations
into map services.

Storage The EGDI application relies on a
PostgreSQL database to store and retrieve
both map configurations and contents.
This enables administrators to manage
both data products and their configuration
in one place.

4.1.2 Architecture
4.1.2.1 Production environment
The system server runs Ubuntu Linux with 4 cores and 16 GB RAM. Installed are:

a) Java SDK/Payara latest stable
b) PostgreSQL latest stable
c) Tomcat latest stable
d) Mapserver binaries latest stable including bridge to Java Mapscript
e) Custom build web application “egdi.war”

The most current installation instructions can be found in GitLab:

https://geusgitlab.geus.dk/egdi/egdi/-/tree/master/docs > 00_install_egdi_on_linux.txt

Other useful instructions can be found in the parent folder.

4.1.2.2 Test environment
The EGDI Web-GIS test and production environment runs on identical hardware as the
production environment. At regular intervals the test server is overwritten with a fresh
image copy from production.

4.1.2.3 Architecture diagram

https://geusgitlab.geus.dk/egdi/egdi/-/tree/master/docs
http://00_install_egdi_on_linux.txt/

Page 18 of 84 Revision no 6 Last saved 21/07/2020 13:17

The EGDI Web-GIS fits into the overall architecture described in this:

Figure 6: Web-GIS fits in overall architecture The Web-GIS is comprised of the
following components:

Figure 7: Web-GIS is comprised of the following components

4.1.3 Metrics
Offering Web-GIS to users involves pushing functionality to the client (browser) and
generating maps, when the user interacts with the map. Pushing functionality to the user
requires very little server-side resource. The primary Web GIS bottleneck is by far the
server-side generation of map images. Therefore, the metrics will focus on this process.
4.1.3.1 Number of users
The system rarely has more than 20 users browsing the portal at the same time. The
number of simultaneous users on the Web-GIS is even lower and peaks during working
hours. We could have considerable spikes in usage like BRGM experienced with the
publication of the OneGeology Europe map, where news articles prompted a huge
interest from the public to browse for data. These events will require a completely
different setup with cached map tiles (pre-compiled images) and a simpler user-

Page 19 of 84 Revision no 6 Last saved 21/07/2020 13:17

interface. It is important to ensure that the planning of such events is coordinated with
the operational team for EGDI.
4.1.3.2 Number of requests
EGDI is currently scaled to support around 10 map generations in parallel. Some map
generations take below 100ms. Other map generations could be well above 20 seconds.
4.1.4 Envisioned scenario for performance testing
4.1.4.1 Stage 1
Empty browser cache
Go to http://www.europe-geology.eu
4.1.4.2 Stage 2
Click the “All Content” entry from the top menu
A map of Europe should be displayed
4.1.4.3 Stage 3
Activate the first layer in the index “euRare occurrences”
Content should appear on the map
4.1.4.4 Stage 4
Zoom to Greece and click a feature on the map
A text list should appear at the bottom of the map
4.1.5 Scalability issues
The current system is built upon GEUS’ own Web GIS and has been running on the
EGDI platform since 2016 with little modification needed. EGDI web-GIS currently has
around 400 map page requests (https://data.geus.dk/egdi) per day with a total of around
6000 related file requests per day (map images, legends, metadata, images etc.).

Here is a typical week of activity (please note, the COVID19 situation may have
influenced stats):

Date Total images
etc.

proxy legend
s etc.

map
images

wfs wms Core
reques
ts

12-05-
2020

6.354 3.357 313 238 1.909 42 80 415

13-05-
2020

3.699 2.363 106 134 749 12 70 265

13-05-
2020

5.959 2.690 568 212 2.141 20 63 265

15-05-
2020

7.288 3.415 672 266 2.295 78 144 418

15-05-
2020

5.426 3.154 356 189 1.222 157 48 300

https://urldefense.com/v3/__http:/www.europe-geology.eu__;!!KbSiYrE!z8dSY1cjLbJWEngs77R9wtscYYFVN09zfv5B3eNA62DiQ5yLxIOUDkOQiUvWgG4191eC1w$
https://data.geus.dk/egdi

Page 20 of 84 Revision no 6 Last saved 21/07/2020 13:17

16-05-
2020

3.163 1.586 209 134 1.089 0 7 138

It is not expected that the use of the platform for GeoERA will give a large increase in
the number of users.

Interactive web maps with high levels of complex data and user requirements are
difficult to scale without sacrificing agility. They are also difficult to fit into a standard
service-level-agreement due to the many possibilities of use offered. The main issues
will be addressed in this chapter.

4.1.5.1 Horizontal scalability via load-balancing
The current system runs on a single Linux node with four cores. This setup is very agile
in terms of deployment and management. This means that very little effort is required in
daily handling and management of the system. The system can be easily scaled via load
balancing using several identical servers/dockers. This will be a linear scaling meaning
that two servers will double the throughput. However, it will nearly also double the
work needed to deploy new software and manage the setup in case of problems thereby
harming agility.

Managing the setup is no easy task because of the many processes and modules
involved. Analysing the core problem through several servers would require extra work
if using load-balancing.

Currently, we can handle 5-10 simultaneous processes per core. Depending on data and
request complexity, a process can last anywhere between 0,1 to 30+ seconds. This
might sound like a serious problem, but the current load of EGDI with just a single
server can cope. The bottleneck is processing power, due to the math involved in
translating GIS-data to raster images. We use Mapserver to read subsets of a data from
the database, transform it into the correct projection and translate each feature using
styling rules into a raster image.

We can expect higher load as GeoERA matures with more user activity and more data
products. In that case, it is advisable to introduce load-balancing gradually starting with
perhaps 2-3 servers/dockers in parallel. The overhead would be acceptable, with the
added benefit of being able to upgrade the nodes one at a time with little or no
downtime.

4.1.5.2 Vertical scalability via raster image caching and user constraints
Huge, static data sets that rarely change and where users just want to show the complete
data on a map are good candidates for raster caching. It requires extra work to establish
and data are “dead” in the sense that further data analysis is not possible. On the other
hand, you can zoom and pan through a huge data set with little or no lag. EGDI Web-
GIS is mainly built for working with the data and therefore currently does not use raster
image caching. A few geological maps are served externally through ArcGIS or

Page 21 of 84 Revision no 6 Last saved 21/07/2020 13:17

Geoserver cache (e.g. the surface geological maps) and are available in EGDI Web-GIS
through proxy.

We can expect higher load in the future and caching could be a solution. The
complexity of managing and serving the data would increase.

Another solution for administering high load could be to introduce user constraints like
maximum requests per day per IP-address, limiting the amount of data available in each
response or require user id in each request. This approach will negatively impact user
experience and increase resources needed for user support. On the positive side, it can
result in more collaboration with end-users on establishing a robust and stable platform.

4.1.5.3 Software
EGDI Web-GIS runs server-side as a Java web application. All functionality and
content is served from the EGDI server through a Java web server to the client. For
Web-GIS, the client is a browser, where the Web-GIS functionality activates client-side
code to offer interactivity directly in the browser through the use of JavaScript.

The interactive map requests data from the server when the user pans, zooms or clicks
the map. Because the data has spatial contents and should be served as map images, the
freeware Mapserver library is used to complement Java.

4.1.5.4 Hardware elements
EGDI Web-GIS runs on the production server GEUSEGDI01 with no additional
hardware requirements.

4.1.6 User review
The EGDI Web-GIS was thoroughly tested during implementation in 2016.
Development since then has been incrementally added with ad-hoc testing.

4.1.7 Performance testing
The EGDI Web-GIS has been in production since mid-2016 and is known to perform
linear according to the hardware resources supplied (CPU cores). Acknowledging this
bottleneck, the EGDI development team introduced measures to push more work to the
client. For example, many maps are hosted by external services (WMS). The Web-GIS
will make a direct connection to the external service without involving the EGDI back-
end.

Tests have shown that around five simultaneous map requests can be handled server-
side per CPU. We are currently on a server with two cores on a virtual environment.

4.1.8 Planned improvements
It is planned to have the system enrolled in CI/CD using GitLab together with its related
application “egdiadmin”.

Due to the abovementioned problems running stable map services in large scale, it is
planned to have map services run on separate server/Docker installation. This will

Page 22 of 84 Revision no 6 Last saved 21/07/2020 13:17

isolate potential downtime to services only and narrow down the potential erroneous
modules when doing maintenance.

Other improvements include a revitalized user interface with less functionality
cluttering the map. A top menu bar will replace many of the embedded tool buttons and
layer-specific functionality will for clarity be gathered in a drop-down menu.

 Development of a search system
4.2.1 Introduction
The Search System is a multilingual web system to let users:

• Discover resources, that is, discover useful or valuable geoscientific information
produced in the GeoERA projects and the one already available through the
European Geological Data Infrastructure (EGDI).

• Access the available information, services or functionality for a resource through
their distributions. Distributions are locations for on-line access related to a
resource: the resource in a certain format, web pages, applications or services
related to the resource and any other information directly related to the resource

• Search inside some resources, supplying subsets of records in a database,
documents in a document repository or concepts in a project vocabulary
(selected features type depends on the resource type).

The back-end development platform mainly used for the Search System is .NET Core 3.1.
This technology is a cross-platform version of .NET for building websites, services, and
console apps that aims to supply best performance and ideal scalability. It is a recent
technology, specially designed to improve all these aspects. Several applications have
already been developed using .NET Core at IGME-ES and the experience has been really
satisfactory.
The Search System application has been deployed in two different environments:

• Internet Information Server (IIS) on Windows Server 2016.
• Apache on Linux (Ubuntu 18.04).

4.2.2 Architecture

Page 23 of 84 Revision no 6 Last saved 21/07/2020 13:17

Figure 8: Search system architectureIGME-ES has deployed the Search System in two
environments, IIS with Windows Server and Apache+Kestrel on Linux. The following
diagram shows the Linux publication, as we believe the final production environment

will be similar to that one. The specific details of the production environment are
currently unknown to us.

4.2.2.1 Production environment
The production environment has not been fully defined yet. The IGME-ES’ development
environment has been established based on what is indicated within WP6 and 7
(https://geusgitlab.geus.dk/egdi/technical-documents/-/blob/master/UsedSoftware.md).
An overview of what the final production environment could be is shown in the next
section.

4.2.2.2 Architecture proposal

Figure 9: Search system architecture proposal

https://geusgitlab.geus.dk/egdi/technical-documents/-/blob/master/UsedSoftware.md

Page 24 of 84 Revision no 6 Last saved 21/07/2020 13:17

4.2.2.3 Software
https://geusgitlab.geus.dk/egdi/technical-documents/-/blob/master/UsedSoftware.md

Module Type Version

Database Manager PostgreSQL 10.10 +
PostGIS 2.4.4

Http Server Apache v 2.4.x

Reverse Proxy 1.10.3

Development framework Microsoft .NET Core v3.1

VM 1

Operating System Linux – Debian 9.11 Strech

VM 2

Operating System Linux – Ubuntu 18.04LTS

4.2.2.4 CPU and RAM

VM CPUs Memory
Virtual Machine 1 2 1024 Mb
Virtual Machine 2 4 8192 Mb

4.2.2.5 Software disk space usage
Software
element

Space disk
(Windows)

Storage
technology
 (Windows)

Space disk
(Linux)

Storage
technology
 (Linux)

Database
(Metadata,
thesarurus,
configuration,
spatial data and
Feature
Distribution
examples).

767 Mb VMWare
Virtual SCSI -
NTFS

767 Mb Hyper-v Virtual
IDE – Ext4

MVC
application

40 Mb VMWare
Virtual SCSI -
NTFS

39 Mb Hyper-v Virtual
IDE – Ext4

https://geusgitlab.geus.dk/egdi/technical-documents/-/blob/master/UsedSoftware.md

Page 25 of 84 Revision no 6 Last saved 21/07/2020 13:17

Suggester API 80 Mb VMWare
Virtual SCSI -
NTFS

42 Mb Hyper-v Virtual
IDE – Ext4

String
processing API

80 Mb VMWare
Virtual SCSI -
NTFS

42 Mb Hyper-v Virtual
IDE – Ext4

Spatial API 24 Mb VMWare
Virtual SCSI -
NTFS

26 Mb Hyper-v Virtual
IDE – Ext4

Spatial RCL 2 Mb VMWare
Virtual SCSI -
NTFS

2 Mb Hyper-v Virtual
IDE – Ext4

Feature
Distribution API
for PostgreSQL

40 Mb VMWare
Virtual SCSI -
NTFS

37 Mb Hyper-v Virtual
IDE – Ext4

Pool of Feature
Distribution
APIs

Unknown. Will
depend on the
implementation.

4.2.2.6 Performance: CPU RAM disk
Link to gitlab
Server/virtual
machine name

CPU RAM Disk

4.2.3 Metrics
Currently the system is not in production and therefore no metrics are available.

4.2.4 Envisioned scenario for performance testing
 Empty your browser's cache.

4.2.4.1 Stage 1
Go to the following web address https://info.igme.es/SearchSystem/v02/en/GeoERA (it
gives access to the publication made in IIS)

https://info.igme.es/SearchSystem/v02/en/GeoERA

Page 26 of 84 Revision no 6 Last saved 21/07/2020 13:17

Figure 10: https://info.igme.es/SearchSystem/v02/en/GeoERA

4.2.4.2 Stage 2
Go to the Spatial Selector (map in the right side). In dropdown showing the default value
“Current extension”, select “Countries” and then “Spain”.

Figure 11: Search system spatial selector

4.2.4.3 Stage 3
Type on the search text input box the string "sandstone calcite" and press the Search button.

https://info.igme.es/SearchSystem/v02/en/GeoERA

Page 27 of 84 Revision no 6 Last saved 21/07/2020 13:17

Figure 12: The results

4.2.4.4 Stage 4
Click on the link “Why these results?” (at the top right of the result list).

Figure 13: The “Why these results?” popup

4.2.4.5 Stage 5
In order to close the “Why these results” modal page, click on the X (close icon). Then click on
“775 mines”.

Figure 14

Page 28 of 84 Revision no 6 Last saved 21/07/2020 13:17

A new tab in the browser is opened showing the location of the selected mines and a table with
their main attributes.

Figure 15: The map with the locations of selected search results

4.2.4.6 Stage 6

Going back to the page shown in stage 3, press the icon (surrounded with the red circle in the
image) to open the detailed information for the resource in a new window.

Figure 16

Page 29 of 84 Revision no 6 Last saved 21/07/2020 13:17

4.2.5 Scalability issues
The Search System is based in microservices architecture, an architectural style that
structures an application as a collection of services that are:

• Highly maintainable and testable.
• Loosely coupled.
• Independently deployable.
• Organized around business capabilities.
• Owned by a small team.

This offers good scalability, agility and reliability. In any case, the intention is to test this
aspect and improve everything that is possible in the future, but the use of this architecture
offers very good guarantees in this area.
More information about ASP.NET Core hosting in a web farm and its behaviour can be
found in the following link, if needed:
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/web-
farm?view=aspnetcore-3.1

4.2.6 Users review
After the Search System’s first demo, the URL to access the published draft version of
the system was sent to all the IGME colleagues participating in any GeoERA projects.
We warned them that it was a first version to which we had to add functionality, correct
errors, add many more resources in the search, etc. However, as we are developing the
system on prototypes, we thought it would be useful to get their feedback: usability,
aspects that they think could be improved, non-intuitive things, etc.

So far, the only contribution proposed to add the possibility of collapsing the filters (by
topic category, resource type and formats), in order to have better access to filters down
in the page, especially when the lists are very long. This functionality has already been
implemented.

4.2.7 Performance testing
The automatic tests make:

• 2 calls to the Suggester API (Autocomplete Web API for Search System)
• 2 calls to the Spatial Selector API. One to get a list of territorial units and

another one to get the geometry for a territorial until.
• 4 calls to the API that selects features inside resources.
• 1 call to the MVC Web application for the Search System.

These series of requests include the main types of calls that the Search System makes in
a regular search process. This cycle is repeated multiple times and in parallel during the
different tests performed.

4.2.7.1 Basic stress test
The system is exposed to a large number of looping (20) multithread (2) requests.

https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/web-farm?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/web-farm?view=aspnetcore-3.1

Page 30 of 84 Revision no 6 Last saved 21/07/2020 13:17

Figure 17: The consumption of memory does not exceed 1.7 GB.

4.2.7.2 System in standby

Figure 18: On standby, the system has an approximate consumption of 1 GB. This value

is similar to the one used for the stress test; it seems to leave a similar amount of
memory reserved for the test.

4.2.7.3 Advanced stress test
The system is subjected to a large number of looping (500) multithread (10) requests
from two computers simultaneously. In total, 20 threads making 500 full calls each.

Page 31 of 84 Revision no 6 Last saved 21/07/2020 13:17

Figure 19: The consumption of memory does not exceed the 8 GB.

4.2.8 Planned improvements
The main improvements to include in the system are:

• To keep advancing in the functionality based on the established requirements
and the users feedback after the different versions that are published.

• Incorporation into the system all the resources available in Micka and its
adaptation to the system.

• Incorporation of feature distributions that allow searching features inside dataset
(records in databases, documents in the document repository, etc).

• Integration with the web GIS for the visualization of the selected features in
feature distributions.

 3D viewer
The current 3D viewer is more a proof of concept than real 3D viewer. It is hoped that
this very simple viewer will be replaced with a viewer with more functions. This is
however not clear at the time of writing.

The viewer runs in a browser and all visualization is done at the computer showing the
model. Therefore visualizing only puts a load on the central platform when reading the
geometries from the database. This is done through two sets of REST services. One that
delivers the setup of the model and one that deliver the spatial data. The data are
delivered on a binary point cloud format for most efficient data delivery. This binary
data are decoded in the browser to a format easily accessed from three.js.
As the final viewer is not in place, testing is not an issue currently.

In order to retrieve a model you will need its ModelId. When you have this you can
retrieve information about the model and it layers using this call (for the model with
ModelId=4):

http://geusegdi01.geus.dk/meta3d/rpc/model_meta?modelid=4

Based on the output of this call you can retrieve the different geometries / points clouds
using this call:

http://geusegdi01.geus.dk/meta3d/rpc/model_meta?modelid=4

Page 32 of 84 Revision no 6 Last saved 21/07/2020 13:17

http://geusegdi01.geus.dk/geom3d/data/nodes/68

For tin surfaces you will need two point clouds, one to get the vertices and one to get
the triangles.

 EGDI document repository search thematic application
4.4.1 Introduction
Several projects have requested the possibility to upload different types of unstructured
data which can also contain different types of metadata. The GIP-P has thus decided to
develop a simple document repository capable of storing PDF documents, pictures and
tabular data. For documents, for which the projects have no ownership, it will be
possible to register them through a DOI, so that they can be accessed through the portal.
Documents with DOI links will not be stored in the repository. Therefore, they will be
searchable through their metadata, but not through their content. All uploaded
documents will be available via permanent links from the EGDI platform.
When a user from a project uploads a (main) document (and optionally, attachments to
that document) into the EGDI document repository, the document and all attachments
are stored on a filesystem at GEUS, metadata of the main document gets inserted into
the repository database and are at the same time sent to Solr index at GeoZS so that they
can be searched upon.
The ‘EGDI document repository search’ thematic application is the single-entry point
through which the user interacts with the repository search system and makes his
search(es). It is the application that runs in the users’ browser, and which makes specific
calls to different backend services to make the users search possible. It enables users to
perform a detailed (searching through different metadata fields of a document including
searching through the document content), thematic (search by related keywords) and
ranked (results get evaluated based on the evaluation criteria) search through documents
that are uploaded into the document repository through the EGDI admin portal.

4.4.2 Architecture
The EGDI Document Repository Search Thematic Application is currently available at
the URL:https://egdi-search.geo-zs.si but the address may change before the final
release (proposed https://search.europe-goelogy.eu).

It is the frontend application that runs in a user’s browser and serves as a user interface
to search through data collections that contain documents that are indexed into Solr
using POST request via the EGDI Admin application.

Indexing the documents to Solr will be limited to EGDI Admin server only.

http://geusegdi01.geus.dk/geom3d/data/nodes/68
https://search.europe-goelogy.eu/

Page 33 of 84 Revision no 6 Last saved 21/07/2020 13:17

Figure 20: EGDI repository search thematic application architecture

Detailed description:

• The user visits the https://egdi-search.geo-zs.si page in his browser.
• The application begins to load, sending several HTTP GET requests to:

o SparQL endpoint, to receive the data for the autosuggested keywords list
o Solr, to receive the documents from different Solr cores and their

corresponding metadata
• The application loads and enables the input box for the user to interact with.
• The user sets his search options and starts his search (detailed usage in chapter

2.7 - User/test scenario (Basic usage & User interface)).
• Based on the user’s search options, searched keyword(s) and type of search

(basic, semantic or advanced) the application constructs the query and makes the
HTTP GET request to the Solr search engine.

• Solr browses through its index files to find the documents that match the
searching criteria and responds with a JSON document.

• Application parses this JSON file and filters and renders its content to the user’s
browser for the user to browse through.

Page 34 of 84 Revision no 6 Last saved 21/07/2020 13:17

EGDI Repository Search platform (frontend application) should work in all the latest
major browser versions:

• Chrome
• Firefox
• Opera
• Edge
• Safari (not tested yet)

At the time of writing version 1.3.2. (with current functionalities) also works in the
legacy browser Internet Explorer 11.

4.4.2.1 Software

Module Type Version

 Web technologies used
for frontend of EGDI
Document Repository
Search Thematic
Application

or

 Web Server

 Search platform 8.4.1

 Database Manager PostgreSQL 10.10

 Query Language for
RDF
(for fetching related
terms)

 programming
language; Solr
requirement

OpenJDK Runtime
Environment 1.8.0

Page 35 of 84 Revision no 6 Last saved 21/07/2020 13:17

 or

 Operating System Independent

4.4.2.2 CPU and RAM

Virtual machine CPUs Memory Disk space &
technology

Virtual machine (for
testing purpose)

Two virtual Intel
Xeon E5-2650 v4
@2.2GHz CPU cores

4 GB RAM 64 GB (system) +
50 GB (other) NTFS

For production purposes we plan to install Solr on a machine with more resources,
which includes more RAM, CPU power and faster disk.

4.4.2.3 Software disk space usage
The application is still in the development phase with only a few examples in Solr
index, so the disk space usage will grow for Solr index files with an increasing number
of documents, pictures and data files in the EGDI document repository.

Software
element

Space disk
(Windows)

Storage technology
 (Windows)

Frontend app
(on web server)

1.21 MB Hyper-v failover cluster with cluster shared volume (CSV)
on HP MSA2052 and HP EVA6400 over FC.
CSV utilizes the Windows NTFS file system on basic disks,
leveraging GUID Partition Table (GPT) format disks.

Solr application 204 MB Hyper-v failover cluster with cluster shared volume (CSV)
on HP MSA2052 and HP EVA6400 over FC.
CSV utilizes the Windows NTFS file system on basic disks,
leveraging GUID Partition Table (GPT) format disks.

egdi-documents
(solr index)

5 MB* Hyper-v failover cluster with cluster shared volume (CSV)
on HP MSA2052 and HP EVA6400 over FC.
CSV utilizes the Windows NTFS file system on basic disks,
leveraging GUID Partition Table (GPT) format disks.

egdi-images
(solr index)

1 MB* Hyper-v failover cluster with cluster shared volume (CSV)
on HP MSA2052 and HP EVA6400 over FC.
CSV utilizes the Windows NTFS file system on basic disks,
leveraging GUID Partition Table (GPT) format disks.

egdi-data
(solr index)

1 MB* Hyper-v failover cluster with cluster shared volume (CSV)
on HP MSA2052 and HP EVA6400 over FC.
CSV utilizes the Windows NTFS file system on basic disks,
leveraging GUID Partition Table (GPT) format disks.

Page 36 of 84 Revision no 6 Last saved 21/07/2020 13:17

4.4.3 Metrics
4.4.3.1 Number of expected users
We know the users will be from all of Europe, but we are unable to estimate the number
of concurrent users, neither do we know how heavy the user's tasks will be. The real
case scenario is so far unknown, but we develop the application with scalability in mind.

4.4.3.2 Number of requests (HTTP GET/POST/PUT…)
To reduce the number of requests needed to load all the data and to limit the transferred
data size, only a partial number of results will be returned to the user when he starts the
search. Additional requests will be sent only when the user wants to view the rest of the
results by adding pagination in combination with GET requests.

4.4.4 Envisioned scenario for performance testing
Here we describe the simplest scenario of usage, because we anticipate that it will be the
most used.

Empty browser cache

4.4.4.1 Stage 1
Go to https://www.geo-zs.si/db/egdi-search/

The site loads:

Figure 21: EGDI Repository search platform home page

https://www.geo-zs.si/db/egdi-search/

Page 37 of 84 Revision no 6 Last saved 21/07/2020 13:17

4.4.4.2 Stage 2
At the top of the loaded site lies the settings menu. Check its Collections and Languages
options.

If all collections are not already selected, check Select all option in the Collections
menu:

Figure 22: Settings menu

Select English (if it is not already selected) in the Languages menu as the language for
semantic search.

Figure 23: Language menu for semantic search

4.4.4.3 Stage 3
Set focus to the search field.

Figure 24: The search field

4.4.4.4 Stage 4
Start typing “water”. As you type, a list of suggestions pops up. This way you can select
the searched keyword, e.g.: “cooling water” with a mouse click in the suggestion’s list
or finish by typing the searched word manually.

Page 38 of 84 Revision no 6 Last saved 21/07/2020 13:17

Figure 25:Autosuggester

4.4.4.5 Stage 5
Now click on the Basic search button to perform the basic search or Semantic search
button to perform the semantic search. (This stage will be changed when the type of the
search is determined in the settings options)

4.4.4.6 Stage 6
Based on the type of the search previously selected the results are shown.

For Basic search:

Figure 26: Basic search

Page 39 of 84 Revision no 6 Last saved 21/07/2020 13:17

For Semantic search:

Figure 27: Thematic search

Results show the collections which returned some documents based on the search
criteria. In this example 0 (zero) documents were found in the egdi-data collection, so
there is no tab for this collection, just for the egdi-documents and egdi-images.

If you click on the icon in the rightmost part of the collection’s tab, the results for the
specific collection are expanded.

Page 40 of 84 Revision no 6 Last saved 21/07/2020 13:17

For Basic search:

Figure 28: Results after egdi-images expand

Page 41 of 84 Revision no 6 Last saved 21/07/2020 13:17

For Semantic search:

Figure 29: Results after egdi-images expand

Page 42 of 84 Revision no 6 Last saved 21/07/2020 13:17

You can see the highlighted (with blue) words for the semantic search also include the
keywords the search system got from the list of the related keywords.

Documents inside a collection are sorted based on the score result. The score bar gives
you information how a specific document is evaluated based on the number and weight
of the found matching criteria for each document.

4.4.4.7 Stage 7
If the user clicks on the title of the document, e.g.: Estimation of effective porosity in
large-scale groundwater models by combining particle tracking, auto-calibration and
14C dating the document’s full article opens in a separate browser tab.

4.4.4.8 Stage 8
For a specific document, the user gets the information about which parts of the
document contain the searched or related (for semantic search) keywords.

Figure 30: Which parts (metadata) contain the searched od related keywords

4.4.4.9 Stage 9
If the user hovers over the attachments category, the list of the attachments related to the
document is shown, e.g.:

Figure 31: Attachment list

Any of these attachments are clickable and lead to the opening of new tabs of the
browser with related data.

4.4.4.10 Stage 10
Attachments in the egdi-images collection are small thumbnails made from images.
Clicking on each of them results in the opening of its full scale image.

4.4.4.11 Stage 11
Information about the document have the full data link at the document’s bottommost
part of its section. This is a link to full metadata information about this document in the
collection that also opens in a new tab.

Page 43 of 84 Revision no 6 Last saved 21/07/2020 13:17

4.4.5 Scalability issues

4.4.5.1 General note
Generally, we can only say that frontend and backend are based on tools which have a
great possibility for scalability.

4.4.5.2 Scalability on the frontend side
Simultaneous connections on an Apache server depend on the response time of each
thread and the memory used by each thread. Since dynamic sites are powered by
databases on the backend, it becomes very difficult to guess the amount of traffic a
single Apache server can handle. Of course, we do not want that the total memory used
by all the threads exceeds the system memory.

Scalability related to the frontend application will be implemented in a relation to the
optimization and reduction of the GET requests that are fired based on some user
interaction with the application’s user interface.

When the search request is made, the asynchronous HTTP GET requests are made in
parallel to all available Solr cores and when the frontend application gets results from
the last Solr HTTP GET request, the data is merged into single JSON object. While a
part of the application waits for the results from the requests to the Solr, the application
itself stays responsive, because of the asynchronous nature of the HTTP GET requests.

4.4.5.3 Scalability on the backend side
Solr is a highly scalable search platform. It uses a denormalized document data model
(each document is self-contained, independent of one another). Good schema design is
an important factor to enhance the scalability of Solr.

Besides that, Solr offers:

1. Cache-management features,
2. Distribution of index: Divide the index (with many documents) into shards, each

of which runs on a separate machine and perform distributed search,
3. Replication of index on multiple servers.

 The SolrCloud (with an embedded ZooKeeper) can also be used for this purpose.

4.4.5.4 Testing
Test indexing (and searching) is performed after every change in configuration of a Solr
core.
4.4.6 Users review
The first test of the ‘EGDI Repository Search platform’ was done from GIP-P project
members, and first test from external user was provided by member of HIKE project but
at that time only the searching through a pdf document was possible. The image search

Page 44 of 84 Revision no 6 Last saved 21/07/2020 13:17

was implemented later, and the first demonstration/test was done by Geoconnect3D
members on February 28th, and additional demonstration/test with improved application
was provided on May 14th to the Geoconnect3D project leader and other project
members.

Figure 32: egdi-images search example

They asked for some mirror improvements that have been mostly implemented in the
current 1.3.1 test version. Some proposals like changes in keywords entry, entering
spatial search request data and nicer display of all document metadata we will try to

Page 45 of 84 Revision no 6 Last saved 21/07/2020 13:17

implement in the future version of the app. Overall they are satisfied, and we received a
good review from them.

4.4.7 Performance testing
So far there has been no performance testing. The application is in the middle of the
development phase, so only basic tests as described in the previous paragraph were
provided by some users.

4.4.8 Planned improvement
In the near future we plan some of the following improvements:
• Maximally reduce the number of requests needed to load all the data and to limit the

transferred data size. Only a partial number of results will be returned to the user
when he starts the search. Additional requests will be sent only when the user wants
to view the rest of the results by adding pagination in combination with GET
requests.

• Instead of using 'Basic Search' and 'Semantic Search' buttons use only 'Search'
button and use radio button for selecting ‘'Basic Search' or 'Semantic Search' option.

• Add a map for selecting spatial search boundary, with additional radio buttons on/of
for spatial search and contains/intersect radio buttons.

• Include MIcKA or Egdi-admin document upload modules for entering keywords. Be
careful because additional possibility for advance search (:, OR, AND, branches).

• Replace current SparQL search database endpoint
https://resource.geolba.ac.at/PoolParty/sparql/geoera_keyword (autosuggest &
semantic) with current official version 2.0 with data.geoscience.earth URI
https://data.geoscience.earth/ncl/ui/sparql-form

• Separate semantic words by languages in Related keywords section: 'Searched
word: water | Semantically related keywords:'

• When using advance search like 'author:BAVEC' put only the author fields in results
• Include Broader/Narrower/Related Terms. Use the right service.
• Check the url limitation. The search url can be very long especially when users

provide a semantic search with many languages selected. We need to examine if the
browser, Solr or something else is limiting the available length of the searched url.

• Creating a site for bug and improvement reporting (at geusgitlab.dk) for external
users.

 MIcKA: EGDI metadata catalogue
4.5.1 Introduction
The EGDI Metadata Catalogue is the central access point to metadata concerning
structured data on geo-energy, groundwater and raw materials themes provided by the
geoscientific GeoERA projects. It provides tools for compilation of those metadata in a
standardized format. In order to make the data discoverable in the most efficient way, the
catalogue is fully compliant with international standards and supports the distributed
system of metadata administration. In order to display a metadata record for which an on-

https://resource.geolba.ac.at/PoolParty/sparql/geoera_keyword
https://data.geoscience.earth/ncl/ui/sparql-form

Page 46 of 84 Revision no 6 Last saved 21/07/2020 13:17

line map service is available, the Metadata Catalogue is integrated into the EGDI Portal
http://www.europe-geology.eu/. The catalogue enables systematic discovery, viewing
and use of available geological data across Europe. The working version of the EGDI
metadata catalogue is operational at https://egdi.geology.cz/ and on the project portal
http://www.europe-geology.eu/metadata/.

Figure 33: The EGDI Metadata Catalogue

4.5.2 Architecture
4.5.2.1 Production environment
The system runs on the operating system SuSE Linux, on encrypted communication
https://egdi.geology.cz/ during harvesting. After any major intervention on the server, a
complete server backup is created on the virtualization platform level to enable swift
recovery if needed. This backup is used as a clone of the server for testing of major
application changes. Regular database increments and changes in the application code are
backed up once a week. In addition to that, one backup copy for each month is stored for
12 months.

http://www.europe-geology.eu/
https://egdi.geology.cz/
http://www.europe-geology.eu/metadata/
https://egdi.geology.cz/

Page 47 of 84 Revision no 6 Last saved 21/07/2020 13:17

Figure 34: EGDI metadata catalogue (MIcKA) architecture

Figure 35: EGDI metadata catalogue (MIcKA) internal schema

4.5.2.2 Software components

MIcKA

INSPIRE Registry

GEOERA Thesaurus

Projects list

Web UI
(HTML)

API
CSW 2.0.2 ISO AP

JSON, DCAT…

Database connector

Core

XSL
Templates

Full
editor

Lite
editor CSW

Output
(HTML/XML/JSON…

Harvestor

Internal schema of EGDI metadata catalogue (MIcKA)

Alternatively ORACLE, MS SQL etc. Postgis

Page 48 of 84 Revision no 6 Last saved 21/07/2020 13:17

MIcKA is a web application for management and cataloguing of metadata for structured
data. It is based on the following technologies: PHP Nette framework, XLST,
PostgreSQL fulltext search, JQuery, Bootstrap and OpenLayers. The data is stored in a
dedicated PostgreSQL database that is backed up regularly once a week. The latest
version of the backup is kept for a month.

Component Type Version

Database backend PostgreSQL 9.2.24 +

PostGIS 2.0

Http Server Apache/2.4.23

(Linux/SUSE)

Programming language PHP 7.0.7

Development
framework Nette Framework 2.4

Frontend components

JQuery 1.11.1,
Bootstrap 3.3.7, Select2
4.0.13, OpenLayers 5.0

Operating System Suse Linux 12 SP5

4.5.3 Metrics
4.5.3.1 Number of users
There are two basic categories of users – metadata editors and metadata browsers. The
number of GeoERA metadata editors is expected to remain approximately the same and
no more than 60. The number of unique visitors browsing the EGDI Metadata
Catalogue was between 20 and 40 per month. The ratio between the new visitors and
returning visitors was 27%:73%.
4.5.3.2 Number of requests
Users visited the catalogue with 50-90 visits per month, which represents an average of
300 pages per month. This number may vary over time and may increase slightly as
GIP-P provides new data from other GeoERA projects. On the other hand, the search
engine will help users to easily find their data of interest, which can reduce the number
of browsing users.

4.5.4 User review

The development version of the MIcKA 6.0.305 application was published in June
2019. Then, testing was performed by comparing the results with previous SW versions.
The test results verified that the requirements for INSPIRE availability and performance

Page 49 of 84 Revision no 6 Last saved 21/07/2020 13:17

were met. Query tests were also performed using the INSPIRE API. Tests on the JRC
validator for profile compatibility with the INSPIRE profile were problematic, as the
JRC validator did not have some items updated according to INSPIRE 2.x at the time of
testing.

4.5.2.3 1st round of functionality testing:

In June 2019, a request for functionality testing was sent to the GIP-P consortium.
GEUS, IGME and CGS performed a test and submitted comments.

During July, August and September 2019, all comments were categorized and resolved.
In September 2019, EGDI MIcKA version 6.1.404 was launched and filled with all
metadata from EGDI MIcKA v. 5 (including the regular harvesting mechanism).
Deliverable 7.1 Working version Metadatabase presents the results of the job.

4.5.2.4 2nd round of functionality testing:

In March 2020, the new version of EGDI MIcKA version 2020.010
(https://egdi.geology.cz) was debugged and extended with a new editing form EGDI-
Lite. The latest version of the GeoERA keyword thesaurus located at the final address
data.geoscience.earth was linked to the EGDI metadata catalogue. The Project
Vocabulary was linked with a temporary address due to ongoing development.

The updated technical documentation was published and is available at
https://czechgeologicalsurvey.github.io/MICKA-Docs/index.html:

1. Detailed technical documentation of the EGDI metadata profile, including a
description of 3D models

2. Cookbook for creating metadata records using the EGDI metadata catalogue

The new version of the EGDI Metadata Catalogue defined the minimum required items
for metadata. The user is not allowed to save a metadata record without filling in at least
these 5 mandatory items (see table below). The Cookbook provides more detailed
instructions for filling in the elements of the EGDI profile in the EGDI-Lite editing
form for the spatial dataset.

Minimum mandatory items for metadata:

1 Resource title
2 Resource abstract
3 Resource type
19 Responsible party
28.1. Metadata point of contact

The EGDI-Lite editing form is brand new and was created for GeoERA project partners
to help them fill in metadata in a familiar way. This form is simpler and more user-

https://egdi.geology.cz/
https://czechgeologicalsurvey.github.io/MICKA-Docs/index.html

Page 50 of 84 Revision no 6 Last saved 21/07/2020 13:17

friendly than the Full-editing form, which was so far the only one used for EGDI
editors. Testing of the EGDI-Lite form was a major part of this testing phase during
April.

In April 2020, 36 user accounts were created for the GeoERA projects metadata editors
and a request for testing was sent to all together with the cookbook and EGDI metadata
profile documentation.

Editors were asked to:
1. test harvesting from national or project metadata catalogues to EGDI, if

they exist (to provide the address of the CSW service)
2. insert a metadata record directly to the EGDI Metadata Catalogue at least

for the testing purposes
3. send additional codelists, if required

The results of testing the EGDI-Lite form, which was performed in April and early
May, were processed. As of the date of this report, 38 GeoERA users have received
their login details to the EGDI Metadata Catalogue. Some of them are going to join the
testing later. A total of 11 editors from 10 projects responded and collaborated on
testing. Unfortunately, we have not received any reaction from 5 projects.
Overall, users were satisfied with the new EGDI-Lite editing environment. Problems
only occurred at the beginning of testing, when cloning and saving records. It was
necessary to better warn the users that the required minimum of items must be filled.
These errors were corrected immediately.
All other comments from the catalogue testing were reviewed, processed and divided
into bugs, tasks and enhancements. Bugs were corrected in April/May 2020, the most
important amendments and changes are being processed in June. Additional comments
defined as enhancements may be included in the next version of the EGDI metadata
catalogue.
The EGDI-Lite editing form, the Cookbook and the documentation will be modified
accordingly. The Cookbook will be extended with a new chapter with detailed
instructions for filling the EGDI profile elements in the EGDI-Lite editing form for
services.
More detailed status and testing results are given in the following table (Y=yes, N=no):

Projects responded
(logged) did test created

record
plan to
harvest

harvesting
status

sent
comments

settlement
status of

comments
3DGEO-EU Y Y Y Y done

HIKE Y Y Y N
HotLime Y Y Y Y in progress

MUSE Y Y Y Y
waiting for
URL Y in progress

GeoConnect³d

Page 51 of 84 Revision no 6 Last saved 21/07/2020 13:17

GARAH Y Y Y Y done
HOVER Y Y Y Y already set up Y done

TACTIC Y (2 eds.)
Y (3
eds.) Y (3 eds.) Y

waiting for
URL Y (2 eds.) done

RESOURCE
VOGERA
FRAME Y N, later

MINDeSEA Y Y Y Y in progress
EuroLithos
Mintell4EU

GIP Y Y Y Y already set up Y done
Total 10 Y 9 Y + 9 Y 4 Y 2 Y + 8 Y 5 Y +

4.5.5 Envisioned scenario for performance testing
4.5.2.5 Stage 1
Type the following web address https://egdi.geology.cz/sign/in. Use a password and a
username obtained on email request from administrator egdi.metadata@geology.cz.

Figure 36: Login page

4.5.2.6 Stage 2
Try to create new metadata record manually directly in the EGDI Metadata catalogue
https://egdi.geology.cz/record/new. If in doubt, the cookbook will help you
https://egdi.geology.cz/catalog/micka/cookbook.

http://geoera.eu/projects/eurolithos1/
http://geoera.eu/projects/mintell4eu7/
https://egdi.geology.cz/sign/in
mailto:egdi.metadata@geology.cz
https://egdi.geology.cz/record/new
https://egdi.geology.cz/catalog/micka/cookbook

Page 52 of 84 Revision no 6 Last saved 21/07/2020 13:17

Figure 37

Page 53 of 84 Revision no 6 Last saved 21/07/2020 13:17

4.5.2.7 Stage 3
Fill in all mandatory fields, which are coloured red to allow you to save the record.

Figure 38: Mandatory fields must be filled

Page 54 of 84 Revision no 6 Last saved 21/07/2020 13:17

4.5.2.8 Stage 4
Stop and save editing process by clicking on button Stop.

Figure 39

4.5.2.9 Stage 5
The metadata record was created and it can be displayed as a basic or full metadata
view. If you are satisfied with the metadata, but your record is still private, it is not
visible to everyone.

Page 55 of 84 Revision no 6 Last saved 21/07/2020 13:17

Figure 40

4.5.2.10 Stage 6
Make your record “public” and set Group for viewing to value “reader”, so that all users
can search and view the record.

Figure 41

Page 56 of 84 Revision no 6 Last saved 21/07/2020 13:17

4.5.2.11 Stage 7

Go to the homepage https://egdi.geology.cz/ and search any metadata you need.

Figure 42

https://egdi.geology.cz/

Page 57 of 84 Revision no 6 Last saved 21/07/2020 13:17

4.5.6 Scalability issues
The EGDI metadata catalogue uses the MIcKA system for management and publication
of metadata on structured data. MIcKA 6 technology enables entry, editing, harvesting,
discovery, and view of metadata on geological data across Europe. It provides tools for
compilation and export of the metadata in a standardized format.
4.5.7 Performance testing
No performance test has been performed since the new software version was
implemented. Testing will be performed later when the system is fully loaded. The
servers are designed for increased load.
4.5.8 Planned improvements
During testing, several comments were collected on the EGDI-Full editing form used by
experienced users of the EGDI Metadata Catalogue. This editing form is necessary to
fill in some additional information, such as special types of keywords required by 3D
data providers. Therefore, for the next period of testing and development, we will focus
primarily on debugging this editing profile and creating its detailed documentation.
The sustainable development of the catalogue is inevitable.

 Extensions to the harvesting system
4.6.1 Introduction
This document describes the Minerals data harvesting (M4EU harvesting) system
provided by GeoZS and the whole harvesting process which includes data providers.
The purpose is to harvest the mineral data from multiple providers into one central
database.

Usually each country has its own specific way to describe geospatial environmental
data. So, you have to involve the Infrastructure for Spatial information in Europe
(INSPIRE) EU initiative to solve this problem. INSPIRE defines common standards to
describe and share the spatial data across borders, requires that data is compatible across
borders and that web services are used for data distribution. Web Feature Service (WFS)
provides standard interface, allowing requests for geographical features across the web
by using platform-independent calls.

The Geological Survey of Slovenia (GeoZS) implemented a harvesting system to collect
and validate INSPIRE compliant spatial European geological data distributed through
WFS 2.0 standard services.

Each data provider has to establish his own database and services on it. The Geological
Survey of Slovenia (GeoZS) runs harvesting on provider request or periodically to
collect data from all data providers in the central European geological database.

Page 58 of 84 Revision no 6 Last saved 21/07/2020 13:17

4.6.2 Architecture

The whole harvesting process is divided into provider (country) sites and the European
level.

Figure 43: Harvesting architecture

4.6.2.1 Software modules and version

Module Side Type Version

EU/GeoZS programming
language

OpenJDK Runtime
Environment 1.8.0

 EU/GeoZS API library JAXB API 2.3.x

EU/GeoZS Developmente
nvironment

Apache NetBeans
IDE 11.0

EU/GeoZS
&
Provider

Database
Manager

PostgreSQL 10.10 +
PostGIS 2.4.4

Provider Aplication
Server

Apache Tomcat 8.x

Page 59 of 84 Revision no 6 Last saved 21/07/2020 13:17

Provider Geospatial
data
management

Deegree 3.x

Provider Extract,
Transform and
Load) tool

 or

EU/GeoZS
&
Provider

Operating
System

Independent

4.6.3 Metrics
4.6.3.1 Number of expected users
Currently we collect data from 29 providers. In the near future we expect two more.
The harvesting system is not intended for public use. Therefore, the person responsible
for performing harvesting runs it when he or she is notified by providers that there are
new data available (or the existing data have changed) or periodically (usually on a
monthly basis).

4.6.3.2 Number of requests
It mostly depends on the number of data providers (29 at the moment) and the number
of data in their databases. The requests are made to different WFS services. We
currently estimate approximately 1 million requests per harvesting.

4.6.4 Envisioned scenario for performance testing
4.6.4.1 On the data provider side
Each data provider has its own database with data which is compliant with the INSPIRE
directive. The database also contains tables/views on which Deegree WFS 2.0 services
are based. The data provider is responsible for maintaining his data in the database and
that his services are available.
4.6.4.2 On European level – provided by GeoZS
At GeoZS we run the harvesting process periodically or on provider’s request. The
harvesting program calls services on provider side using a GET request. The response is
in XML format which is then parsed using the Java programming language and the
JAXB library. The parsed data gets collected, validated and stored into an appropriate
table in a central database. The system is implemented in Java with the use of parallel
computing features and the whole solution is supported by open source software. After
the harvesting process is finished for all countries, the records are checked in a way to
prevent data gaps regarding missing data from some provider(s). If data gaps are
detected, then we communicate with the provider to solve the problem. Otherwise we

Page 60 of 84 Revision no 6 Last saved 21/07/2020 13:17

use the last successful harvesting data for that provider (provider referential database).
Finally, a copy of the database is sent via ftp to the EGDI central database at GEUS
from where data can be shown on the EGDI web GIS.

4.6.5 Scalability issues
The harvesting process is scalable because it harvests data in parallel for every provider.
New providers can be added easily.

4.6.6 User review
The test harvesting is performed when the data provider does some environment
changes (like migrating their software on different hardware, software upgrades, ...),
bigger changes in data entries, when the programming code is improved or when errors
are detected.
Data providers will compare data in harvested database tables with data in their original
database tables and report all discovered differences.

4.6.7 Performance testing
So far there have been not outage of the harvesting system either on the data provider
side or the harvesting side. The metrics so far do not reflect any needs for a higher
usage. Therefore performance testing has not been judged useful at that time.

4.6.8 Planned improvements

For harvesting M4EU v 2.04 database the following improvements are planned to be
implemented:

• To implement a solution to removing a data gap in the harvesting process:
the harvested database must have no data gaps. Currently, when the harvesting
process is run, it is not rare that harvesting of some provider’s data fails. These
failures happen, for example, when the provider’s servers are not online, when
the server is too busy and not responding correctly, due to errors because of the
incorrect data entry by the provider or owing to errors because the provider
modifies its data by following a ETL process at the harvesting time. In the
occurrence of any failures listed in this paragraph, the system will keep the last
successful harvesting data for those providers.

• To implement a report for a quick checking of the harvesting results:
after harvesting is finished, currently, only the database dump is provided. This
is insufficient; it should provide a report with an overview of the records
harvested by the providers. In that report, the dates for provider harvesting
should be shown.

• To implement a solution for geometry checking:
if the provider enters the geometry data incorrectly, the data cannot be shown on
the map. We need a tool for geometry checking and reporting irregularities.

Page 61 of 84 Revision no 6 Last saved 21/07/2020 13:17

• To provide a support for more than one data provider per-country:
because one country could have more than one provider, we need to modify
m4eu database to add a country code and/or data provider acronym name to each
table. In that way, we can assure the correctness of the data source

• To provide a solution for minerals service monitoring:
currently, providers do not know if some of the required services are up or
down. The harvesting process fails if the services are not up. By providing a
service monitoring, the provider will immediately be aware of the problem and
will be able to fix it. With the help from the monitoring services, the harvesting
process will not start if services are not up and running

• To provide a better logging:
currently, the harvesting process has one big log file, with a non-transparent
content. With the current logging, it is impossible to see the history of logging
for a provider. A better and more transparent logging is desirable for each data
provider

• The improvement of the current harvesting code:
the harvesting results are sometimes strange or some data appear not to be
harvested. In order to use the data, EGDI needs complete and correctly harvested
datasets. Therefore, an extensive testing, discovering bugs, a code debugging
and fixing is required for the harvesting process. Improvements in the harvesting
code should also include all requested improvements in the database, code lists,
views, services, etc.

• To provide tests with providers:
providers must help to improve the harvesting process by comparing their source
database with the harvesting results and report all identified differences to
harvesting@geo-zs.si. They must also send information on data change in their
databases. Any missing tables, differences in records count and different field
values must be discovered and corrected.

• To check for stable INSPIRE ID fields:
an identifier should correspond always to the same deposit and should not be
changed by the provider. Providers should normally change just the version ID
and the begin/end life span. Providers usually change the data by ETL process,
which first deletes all their data in their database and create a new set. In that
process, providers generally do not take into consideration stable INSPIRE id
fields. We cannot just trust that stable INSPIRE ids where provided. We need an
automatic mechanism to check and report deviations, so checking should be
added to the harvesting process in some way.

• To provide a history information for number of data records for provider:
To track a progression in amount of data provided by a provider, we need a
solution for showing the history of the number of harvested records from the
m4eu database tables. This could be solved by creating a special table or
database with the harvesting history data (history of count reports), which could
provide us a progression view for a certain provider (history of number of data
entries in each table).

• Option for recreating a provider local database:
That is, to provide a solution to data providers, so they can recreate their

mailto:harvesting@geo-zs.si

Page 62 of 84 Revision no 6 Last saved 21/07/2020 13:17

harvested database on their side. This solution will provide an additional option
to providers to check if their database was harvested correctly.

• Add m4eu version log table with service:
Information about the m4eu database version, code list version and views
version. Maybe, we could also have a record where users can put their last
database modification date. All that information must be provided by services.
That information can be checked by the harvesting process.

• To provide an information for the latest database modification by the
provider:
It is not important only when the last harvesting was provided by the country,
but also when a provider modifies the database. Providers will be required to
manually change some fields in their database after each data update.

• The integration of the next version of M4EU database:
The ORAMA project gave some recommendations to improve the M4EU
database, the software versions of Java Development Kit (open source), Apache
Tomcat, Deegree3, and PostgreSQL and the mapping of the WFS-services.
Many of the ORAMA recommendations have now been tested, but some still
need to be tested before they are implemented in the next version.

• Differences between current M4EU DB v1.1.2 and next version v.2.x:
o 2 new DB tables ‘commoditygrouptype’ and ‘totalproduction’
o Updates of more codelists tables especially tables ‘commoditytype’,

‘UNFCategoryType’ and ‘WasteTypeType’
o Adding myb schema with tables, views and codelists for Mineral Year

Book data
o (nice to have but currently not planed: Updates of INSPIRE schemas)

 Administration module
4.7.1 Introduction
The EGDI Administration module is a web site allowing users (GIP-users and selected
project-members) to upload, edit and delete content which be available in the “Web
GIS” and in “The EGDI document repository search thematic application”.

From a user-perspective, the Administration module comprises of the following key
functionalities:

 Create maps to be shown in Web GIS (showing data from created data sets)
 Create data sets by uploading spatial data files:

o Geopackage files
o ESRI Shape files

 Upload files and associate common metadata
o Upload jpeg files
o Upload pdf files
o Upload csv files (not implemented yet)
o Upload doi links

 Edit uploaded files and their metadata

Page 63 of 84 Revision no 6 Last saved 21/07/2020 13:17

 Login functionality (so users can only edit/upload files or datasets within their
own project)

The system is a full-stack system using client-side logic (browser), server-side logic,
and data storage.

Client-side logic Interactive web page (JSP and JavaScript)
with embedded logic using common browser
modules like jQuery, Bootstrap.
Servered by Tomee

Server-side logic A Java (JSP) web application running in
Tomee. Uses various jar libraroes to read
metadata from jpg, pdf files. Uses
mapserver/gdal to import shapefiles and
GeoPackage files into the database (as data
sets).

Storage (database & file) The application uses a PostgreSQL database
to store and retrieve maps, data sets and
metadata. The database also holds user
credentials.
The uploaded files are stored in a file share
on the server.

4.7.2 Architecture
4.7.2.1 Production environment
The production version of the Administration module is currently installed on the same
server as the Web GIS module. The server name is geusegdi01 (see section 1.8.2 for
details). The url for the modules web interface will be located at https://admin.europe-
geology.eu.

The most current installation instructions can be found in GitLab at:
https://geusgitlab.geus.dk/egdi/egdiadmin/-
/raw/master/docs/install_egdiadmin_on_linux.txt

4.7.2.2 Test environment
The systemtest environment is used for

• Integration test between different modules (so we know that they work together)
• Testing of new features by the users (requirement testing and usability testing)
• Practicing use of the features (upload etc)

The test environment is used for feature testing and usability testing of the
Administration module. The url for the web interface will be located at https://admin-

https://admin.europe-geology.eu/
https://admin.europe-geology.eu/
https://geusgitlab.geus.dk/egdi/egdiadmin/-/raw/master/docs/install_egdiadmin_on_linux.txt
https://geusgitlab.geus.dk/egdi/egdiadmin/-/raw/master/docs/install_egdiadmin_on_linux.txt
https://admin-test.europe-geology.eu/

Page 64 of 84 Revision no 6 Last saved 21/07/2020 13:17

test.europe-geology.eu.
The test environment runs on the server called egditest01 and uses identical hardware as
the production environment.

4.7.2.3 Architecture diagram

Figure 44: Administration module arhitecture

In system architecture diagram shown above you can see:

• The integrations of the different modules that the Administration module consist
of (shown in blue)

• The communication of the Administration module with other modules (shown in
red)

4.7.3 Metrics
4.7.3.1 Number of users
We expect a few simultaneous users 1-10 and only a few 1-3 doing heavy operations
(upload of spatial data) at the same time.

4.7.3.2 Number of requests
A low number due to the few expected users. The system should be able to handle 5
GET page requests pr. second.

4.7.4 Envisioned scenario for performance testing
The Administration module has been tested by the “test scenarios”, “end to end flow
test” and “manual test” method mentioned in section 3.1. No automatic unit tests or
integration tests have been implemented.

Suggested end-to-end flow tests

a) Upload pdf file with no existing metadata

https://admin-test.europe-geology.eu/

Page 65 of 84 Revision no 6 Last saved 21/07/2020 13:17

• Upload a pdf file (without any metadata in the file)
• Enter the metadata
• Verify that the file is uploaded correct

o That the pdf url is working
o That metadata looks correct in the administration module (in the “docs”

page)
o That metadata looks correct in solar
o That metadata is written to the pdf file (download the file and view in

acrobat)

b) Upload pdf file with existing metadata

• Upload a pdf file (with metadata already present in the file)
• Verify that you can see the (existing) metadata in the GUI

o Overwrite some of the metadata
• Verify that the file is uploaded correct

o That the pdf url is working
o That metadata looks correct in the administration module (in the “docs”

page)
o That metadata looks correct in solar

c) Upload jpg file with no existing metadata

• Upload a jpg file (without any metadata in the file)
• Enter the metadata
• Verify that the file is uploaded correct

o That the url is working
o That metadata looks correct in the administration module (in the “docs”

page)
o That metadata looks correct in solar
o That metadata is written to the jpg file (download the file and view in

acrobat)

d) Upload jpg file with existing metadata (including gps position)

• Upload a jpg file (with metadata in the file – title, gps position)
• Verify that you can see the (existing) metadata in the GUI

o Overwrite some of the metadata
• Verify that the file is uploaded correct

o That the url is working
o That metadata looks correct in the administration module (in the “docs”

page)
o That metadata looks correct in solar
o That metadata is written to the jpg file (download the file and view in

acrobat)

Page 66 of 84 Revision no 6 Last saved 21/07/2020 13:17

e) Upload geopackage file with multiple layers

• Upload a geopackage file (with at least two layers)
• Verify that all layers are upload in the GUI

o Verify that you can see the preview of all the layers

f) Upload a shapefile

• Upload shapefiles (with at least two layers)
• Verify that all layers are upload in the GUI

o Verify that you can see the preview of each of the layers

Suggested scenario tests

a) Login to your project (user with a single project)

• Try to login to the administration module with a user having access to one
project (etc HIKE)

• Enter username
• Enter password
• Verify that you can login (the project will be shown at the right top of the

screen)

b) Login to your project (user with multiple projects)

• Try to login to the administration module with a user having access to multiple
projects (etc HIKE and TACTIC)

• Enter username
• Enter password
• Verify that you can login (if you select a project (etc. HIKE))

c) Reject login if wrong project (user with no access to project)

• Login to the administration module with a user with no access to a project (etc
HIKE)

• Enter username
• Enter password
• Select project (etc. HIKE)
• Verify that you cannot login (get error message)

4.7.5 Scalability issues
Some of the features in the EGDI Administration module relies on heavyweight system
operations such as importing spatial data files (etc. GeoPackage files) through
mapserver / gdal and processing metadata in the uploaded files (etc pdfs).

The module is therefore not expected to scale to a lot of simultaneous users - if they are
using these heavyweight operations at the same time. This is ok given that the module is

Page 67 of 84 Revision no 6 Last saved 21/07/2020 13:17

intended for a few expert users who occasionally needs to upload or edit content. It is
intended to test how many users can do these heavy weight operations at the same time.

If a higher number of simultaneous users is desired the system can be scaled either
horizontally (by increasing RAM and disk IO) or verticallyby running serval instances
of the Administration module (etc. using docker images) with a load balancer in
front(see section 4.1.5.1 regarding load balancer for the WebGIS) .

4.7.6 User review
After the Administration module was released to systemtest the module has been tested
by selected GSP users from the HIKE, HOVER and TACTIC projects.

The users have been given an account on the test system and are asked to upload
documents which would be used in their projects. Feedback was received by mail.

List of performed GSP user tests:

Date Project Tested Remarks
02/04-2020 HIKE Login

Upload PDF
Secure PDFs must also be
supported in upload (suggested
some UI changes)

16/04-2020 HIKE Login
Upload secure PDFs
UI changes

Tested ok

20/05-2020 HOVER Login
Upload Pdf

PDF upload is easy to use
(requested for case insensitive
login (already implemented))

11/06-2020 TACTIC Login
PDF upload
JPG upload

Tested ok

4.7.7 Performance testing
All the tests described in “end-to-end-flow-tests” and “scenario tests” have already been
performed manually by the development team (GEUS). Also a lot of manual tests have
been performed.
All of the described “end-to-end-flow-tests” have also been carried out by selected end
users of the “TACTIC”, “HIKE” and “HOVER” projects. Their suggestions and found
issues have already been implemented (case incentive login of username, upload of
protected pdfs).

Because features are being added to “the administration module” continuously (like
DOI uploads). The list of test scenarios and end-to-end-tests is expected to expand in
the future. Also, it is recommended to retest all of the flows as new features might affect
already implemented features.

Page 68 of 84 Revision no 6 Last saved 21/07/2020 13:17

4.7.8 Planned improvements
In the future it is planned that the other GSP also test these feature – so we know the
implemented features for upload of documents are adequate for all the projects. Also the
upload of the following features should be user tested / reviewed:

• DOI upload (upload a document by doi reference)
• CSV upload (upload csv data files)
• Upload of geo package data
• Upload of shape files

 Vocabulary tool
4.8.1 Introduction
Project Vocabularies are collections of controlled dictionaries containing essential
information about scientific concepts relevant for a project. The primary goal is to
support projects and datasets with linguistically labelled terms. Project Vocabularies
provide stable and reusable links to concepts (units of thoughts) that can be referenced
whenever unambiguity is important. Behind such links alternative names, translations,
definitions synonyms and additional information about other related concepts are made
available. In any situation when something must be unambiguously named, a concept
from a Project Vocabulary can be used. A Project Vocabulary can facilitate search and
information access in a linked data environment. The GIP-P thus encourages all projects
to create projects vocabularies.
After comparison and thorough test the EGDI platform has selected the
UKGovLDregistry13. It has been installed and is accessible at
http://data.geoscience.earth/ncl/.

13 https://github.com/UKGovLD/registry-core

http://data.geoscience.earth/ncl/

Page 69 of 84 Revision no 6 Last saved 21/07/2020 13:17

4.8.2 Architecture

Figure 45 : Vocabulary tool architecture

4.8.2.1 Hardware
Module CPU RAM
VM 1 2 4Go
VM 2 1 4Go

4.8.2.2 Sofware

Module Type Version
VM 1 Operating System Linux – Centos 7
VM 2 Operating System Linux – Centos 7
UkGovLDregistry Vocabulary tool

4.8.3 Metrics
Metrics are captured by using BRGM Motomo deployment at https://wwwstats.brgm.fr.

https://wwwstats.brgm.fr/

Page 70 of 84 Revision no 6 Last saved 21/07/2020 13:17

4.8.3.1 Number of users
There are about 15 to 25 users per day.

4.8.3.2 Number of requests
There are about 280 to 400 requests per day.
4.8.4 Envisioned scenario for performance testing
4.8.4.1 Stage 1
Empty your browser cache
Connect to http://data/geoscience.earth/ncl/

Figure 46

4.8.4.2 Stage 2
Go to https://data.geoscience.earth/ncl/ui/dataset-search

Figure 47

4.8.4.3 Stage 3
Go to https://data.geoscience.earth/ncl/ui/sparql-form
4.8.4.4 Stage 4
Run the following SPARQL query which is used for harvesting all the basic terms
without hierarchy.
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix owl: <http://www.w3.org/2002/07/owl#>
prefix xsd: <http://www.w3.org/2001/XMLSchema#>
prefix dct: <http://purl.org/dc/terms/>
prefix foaf: <http://xmlns.com/foaf/0.1/>

http://data/geoscience.earth/ncl/
https://data.geoscience.earth/ncl/ui/dataset-search
https://data.geoscience.earth/ncl/ui/sparql-form

Page 71 of 84 Revision no 6 Last saved 21/07/2020 13:17

prefix skos: <http://www.w3.org/2004/02/skos/core#>
prefix version: <http://purl.org/linked-data/version#>

prefix reg: <http://purl.org/linked-data/registry#>

SELECT ?entity ?label
where {
values ?reg {<https://data.geoscience.earth/ncl/geoera/keyword>}
?item reg:register ?reg ; version:currentVersion ?itemVer.
?itemVer reg:definition ?x.
?x reg:entity ?entity.
?entity skos:prefLabel ?label.}

4.8.5 Scalability issues
The actual architecture of https://data.geoscience.earth is the result of an identified
scalability issue. There was a bottleneck in the URI resolver. That has been solved by
having multiple Apache Httpd server instance.
We have leveraged Docker containers, and because we foresee a more important usage
of the registry in the future we envision the possibility to migrate to container
orchestration with Kubernetes.
4.8.6 User review
The tool has not been developed in the project. It has been chosen based on requirement
made by ontologists at BRGM. They thought that rather than reinventing the wheel they
would better use an existing software and make requests for improvement.
As of now the ontologists are confident in using the tool and feel it fits its purpose.
4.8.7 Performance testing
The architecture so far is able to sustain the actual users of the system. We envision to
test the performance of the vocabulary tool once we will have clearer use cases that
could, for example, make a huge usage of linked data through scripting or AI.
4.8.8 Planned improvements
The planned improvements are done by the user community of the tools and are the
following:

a) Notification mechanism for any action on a registry (Pub/Sub)
b) Support of the requested format for the registry federation INSPIRE
c) Internationalization of the interface (i18n)
d) Semantic consistency tests when adding entries to registers
e) Refinement of the life cycle management

 Monitoring system
4.9.1 Introduction
The monitoring system lists and monitors the map layers that are registered on the
EGDI portal.

The web application has the following functionality

Page 72 of 84 Revision no 6 Last saved 21/07/2020 13:17

• All layers/services in the EGDI database that are linked to maps on the EGDI
portal have been registered in the Zabbix system running at GEUS. The
registration is done via the Zabbix API (create_zabbix_from_egdi_layers.html).
Zabbix will call getCapabilities for each registered service every hour and will
log if the service returns an XML document and how fast the service answers.

• The main monitoring page (MonitorSmiley.html) presents the layers in a
hierarchy table with two levels ”Maps” and ”Groups” corresponding to the
layout on the EGDI portal. The two level can be collapsed in the visual layout by
clicking on them with the mouse.

• For each layer it will be shown if there is registered metadata in the MICKA
database. If there is metadata, then a green smiley is shown.

• For each layer an interpretation of the latest data from Zabbix will be shown.
Red smiley if the service does not respond or does not respond with an XML
document. Yellow smiley if the service takes a long time to respond. Green
smiley if the service responds with an XML document within one second.

• One or more of the layers can be selected and then shown in the EGDI map
viewer.

• When a specific layer is clicked then a new page (MonitorSmileyLayer.html)
will open showing detailed information about the layer. For example a
description, data from Zabbix, Links to the service and to the metadata.

4.9.2 Architecture
The monitoring system is running on this address:
https://data.geus.dk/egdi_monitor_smiley/MonitorSmiley.html

The user interface consists of two Javascript web pages. The backend is a Zabbix
installation and a Postgrest interface to the EGDI database. Both of these are called
directly from the web pages.
4.9.3 Scalability issues
The monitoring systems is implemented with direct calls from the web page to the
Zabbix server. Two calls are made for each layer that is monitored. The calls are made
asynchronously for performance. The Zabbix status for 100 layers takes about one
second to load. This delay when loading the page is considered reasonable.
4.9.4 User review
The design and functionality of the monitoring system have been shown to users at
project meetings.

4.9.5 Planned improvements

The feature requests below have not been implemented yet

• A quality assessment of the metadata in MIcKA should be shown. Probably as a
red, yellow or green smiley. How to do this can be discussed with MIcKA. A
suggestion is to use INSPIRE compliance as the way to get a green smiley.

https://data.geus.dk/egdi_monitor_smiley/MonitorSmiley.html

Page 73 of 84 Revision no 6 Last saved 21/07/2020 13:17

• It should be shown how well the service complies with the FAIR principles.
What are the legal restrictions when using the service for example? This
information is probably also something that should be extracted from the
Metadata in MIcKA.

• More information about the services should be shown. Which coordinate
systems are supported? Which output format are supported? Which OGC
versions are supported? Do WFS services provide a rendering specification?

• It should be possible to download data files that have been delivered to EGDI
(relevant for static data).

• Then Zabbix registration should call getMap instead of getCapabilities. This will
answer more precisely if the service is running correctly.

• It should be possible to group the layers according to the project they are
generated from in addition to the existing grouping by topic.

• The detail page should show the result of a getMap call (an image) to the
service.

• When opening layers on the EGDI map the map should be zoomed in to the
maximum extent of the layers.

Page 74 of 84 Revision no 6 Last saved 21/07/2020 13:17

5.SYNTHESIS
 Global architecture

Figure 48 : EGDI Platform and modules global architecture

 User review
All the module teams have identified the process for reaching the user and dedicated
time to review their developed features.

 Prototypes
Prototypes have been scheduled taking into account WP5. An architecture is being
spawned on the development architecture. They will be evaluated later.

 Static code analysis
In the GIP-P context, teams are not familiar with static code analysis. Hence, we were
not able to assess the quality of the code. We plan to have dedicated small meetings,
taking the shape of training session for spreading the use of automated static code
analysis.
This will be performed using one of the most used open-source software:
https://www.sonarlint.org which allows real-time analysis as the developer code.

 Unit test policy proposal
Unit test has been started in the GIP project context. We propose the following
approach.
5.5.1 Controllers test / WS
Unit tests should not only test the service called by a controller but also the controller
itself. This makes it possible to check the correct retrieval of the WS parameters on a
GET, POST or other and thus to check compliance with the WS interface contract.
The example of a @WebMvcTest annotation of the Spring framework allows to test, to
instantiate a controller and to really test the call to the WS.
Example:

https://www.sonarlint.org/

Page 75 of 84 Revision no 6 Last saved 21/07/2020 13:17

@RunWith(SpringRunner.class)@WebMvcTest(controllers = FicheController.class)public class
CreerFicheControllerTest { @Autowired private MockMvc mockMvc; @Test public void
rechercherEntiteById() throws Exception { this.mockMvc
.perform(post("/rest/private/rechercher/entite") .header(HttpHeaders.AUTHORIZATION,
getAuthorizationHeader()) .param("gid", "7291") .accept(MediaType.APPLICATION_JSON))
.andExpect(status().isOk()) .andExpect(jsonPath("$.gid").value(7291))
.andExpect(jsonPath("$.entite").value(ENTITE))
.andExpect(jsonPath("$.denomination").value(DENOMINATION_ENTITE))
.andExpect(jsonPath("$.inclue").value(ENTITE_PARENTE));}
5.5.2 Context for taking the tests
Each test must be repeatable indefinitely and always produce the same result. For this
purpose, the environment required to run the test must be the same at the beginning of
each run. A test context (test fixture14) must be set up.
The tests must be able to run on any environment (developer workstation, continuous
integration platform, etc.) and must not depend on external resources to be installed
beforehand (database, ldap, etc.).
Frameworks allow the creation of an autonomous and constant environment, similar to
the target environment in order to be able to run unit tests.
- Database: The H2 database allows data to be stored in memory, does not require
installation and is volatile. H2 allows the use of classical spatial functionalities.
- Object mock: Mockito allows to replace the input objects of the functionality to be
tested by simulated objects whose behaviour and values are controlled.
- Web services mock: Wiremock allows to replace, in a transparent way for processing,
the web services needed by the unit test by simulated web services whose behaviour and
returned data are controlled.
Example:
@Rulepublic WireMockRule wireMockRule = new WireMockRule(8090); @Beforepublic void init() {
wireMockRule.stubFor(any(urlMatching("/referentiels/v1/interlocuteur.xml\\?offset=[0-9]+&limit=[0-
9]+&derniereDateDeMAJ=2018-11-01")) .willReturn(aResponse()
.withBodyFile("ws_interlocuteur_par_type.xml") .withHeader("Content-Type",
MediaType.APPLICATION_XML) .withStatus(200))); wireMockRule.stubFor(
any(urlMatching("/referentiels/v1/interlocuteur.xml\\?offset=[0-9]+&limit=[0-
9]+&derniereDateDeMAJ=2018-11-04")) .willReturn(aResponse().withStatus(204)));}
1.SMTP server: Green Mail is an SMTP server that does not require installation. It is
instantiated in memory which makes it particularly suitable for testing the sending and
receiving of mail in unit tests.
Example:

@Injectprivate MailConfiguration mailConfig; @Beforepublic void init() { smtpServer = new
GreenMail(new ServerSetup(25, null, "smtp")); smtpServer.start();} @Afterpublic void tearDown()
throws Exception { smtpServer.stop();} @Testpublic void testBatchAbort() throws Exception {
String contenuMsg = null, mailSubject = null; Address[] mailFrom = null, destinataires = null;
...execution du traitement... MimeMessage[] receivedMessages = smtpServer.getReceivedMessages(); if
(receivedMessages.length != 0) { MimeMessage mail = receivedMessages[0]; contenuMsg =
GreenMailUtil.getBody(mail); mailFrom = mail.getFrom(); mailSubject = mail.getSubject();
destinataires = mail.getAllRecipients(); } assertThat(receivedMessages.length).isEqualTo(1);
assertThat(contenuMsg).isNotBlank(); assertThat(contenuMsg).contains("Une erreur s'est produite dans
le traitement"); assertThat(mailFrom).isNotEmpty();

14 https://en.wikipedia.org/wiki/Test_fixture

https://en.wikipedia.org/wiki/Test_fixture

Page 76 of 84 Revision no 6 Last saved 21/07/2020 13:17

assertThat(mailFrom[0].toString()).isEqualTo(mailConfig.getFrom());
assertThat(mailSubject).isEqualTo(mailConfig.getSubject());
assertThat(destinataires).containsExactlyInAnyOrder(InternetAddress.parse(mailConfig.getTo())); }
2.Ldap: Spring Embedded Ldap + UnboundID LDAP SDK allow to instantiate a LDAP
server supporting LDAPv3 protocol with the ability to initialize inputs and extend
schemas via ldif files.
SpringBoot configuration:
#ldapspring.ldap.embedded.base-
dn=dc=brgm,dc=frspring.ldap.embedded.credential.username=uid=adminspring.ldap.embedded.credentia
l.password=secretspring.ldap.embedded.ldif=classpath:data.ldif
spring.ldap.embedded.port=12345spring.ldap.embedded.validation.enabled=truespring.ldap.embedded.va
lidation.schema=classpath:schema-custom.ldif

Page 77 of 84 Revision no 6 Last saved 21/07/2020 13:17

 Security tests
We plan to have dedicated time to present and train the different team to use Owasp
ZAP15. Each team would then report on the scan results, leading to potential security
improvement.

 FAIR assessment
We want to use WP3 recommendation tool: https://inspire.ec.europa.eu/validator/
We might also use: https://github.com/opengeospatial/teamengine

 Module improvements
We have seen that the GIP-P project has produced an important effort in development
and has made significant improvement in regards to the user expectations.

 Conclusion
We suggested from the very start to have a pragmatic approach and focus on the easiest
actions because this deliverable has been written halfway through software delivery
plan. This pragmatic approach translates into focusing on the user review and the
coherence and global understanding of the EGDI platform.
Following that mind-set, and throughout this deliverable, we have been able to achieve
progress on multiple layers: a) the global understanding of the system, b) the solicitation
of the system, c) the user satisfaction so far, d) define actions on the testing framework
and e) on the module improvements
This stage in the testing framework is presented by Figure 6. It gives the rational for the
next testing activities.

Figure 49: Testing quadrant status

We suggest to have a review of this document that would demonstrate this improvement
of the status of the EGDI platform in regards to the testing strategy.

15 https://owasp.org/www-project-zap/

https://inspire.ec.europa.eu/validator/
https://github.com/opengeospatial/teamengine

Page 78 of 84 Revision no 6 Last saved 21/07/2020 13:17

6.ANNEX: EGDI DOCUMENT REPOSITORY
FUNCTIONNALITIES
When you go to the URL: https://www.geo-zs.si/db/egdi-search/ you get the home page
of the EGDI Repository Search platform.

Figure 50: The home page

Settings menu
In the navigation bar of the application, the user can optionally set the following options
in the settings menu:

• Language of the autosuggested keywords list
o English (default) - predefined
o Current language of the user's browser

Figure 51: Language(s) for the semantic search

Figure 52

• Collections from which to get the search results

o egdi-images
o egdi-documents
o egdi-data

https://www.geo-zs.si/db/egdi-search/

Page 79 of 84 Revision no 6 Last saved 21/07/2020 13:17

Figure 53

• Type of search (to be implemented)

o basic search
o semantic search
o advanced search (to be implemented)

• Spatial search (to be implemented)
o on/off and
o contains/intersects buttons

In the navigation there is also the help information available on mouse hover.

Figure 54: The tips popup window on mouse hover

Input search box
The user then starts entering the characters of the search term in the input search box.
As he starts typing, the autosuggested keywords box pops up with suggestions.

Page 80 of 84 Revision no 6 Last saved 21/07/2020 13:17

Figure 55: The list of autosuggested keywords

The user can then click on the specific word from the autosuggested keywords list or
confirms the word with [Enter]. We plan to enable searching by multiple keywords (see
Figure 8)

Figure 56: (this type of search is not implemented yet as in version 1.3.2)

Then the user performs the search with a click on the Search button. Based on the
search type, additional HTTP GET requests are executed under the hood.

Figure 57: Search type procedure

Example of a Basic search:

• User types the searched word(s) and presses Search button.
• The searched word(s) are displayed and highlighted in the results which are

grouped and displayed to the user.

Page 81 of 84 Revision no 6 Last saved 21/07/2020 13:17

Figure 58

Example of a Semantic search:

• User types the searched word(s) and presses Search button.
• The searched word and related terms for a specific language are displayed and

highlighted in the results which are grouped and displayed to the user.

Page 82 of 84 Revision no 6 Last saved 21/07/2020 13:17

Figure 59

Example of Advanced search:

4. User can type specific Filter query parameters, e.g.:
a. Author: “Nina Rman” - search returns only the documents where one of

the authors is “Nina Rman”
○ Bottled AND mineral water - (boolean operator) search returns only the

documents which contain both terms. Other boolean operators include OR, NOT.

Page 83 of 84 Revision no 6 Last saved 21/07/2020 13:17

Figure 60

Spatial search selector
The user interface will also implement the geographically aware type of search in
combination with the three types of searches mentioned above. The user will be able to
choose the area of interest in the web map and then cross examine this area with
conjunction to input field values.

The results (as in this version) are grouped by collections and descended based on the
Solr matching score. The result from each matching document that gets rendered to the
page consist of:
Highlighted text of the matching part of the document from the specific metadata field
or content with the matched keywords
Document’s title and URL to access it
Image thumbnail (in case of the image collection) or icon describing the type of the
document
Full metadata link - link to the full record’s data that pops up in a separate browser tab
Attachments – document's attachments that link to the data (images, pdf documents…)
related to the main document. For image attachments, the small thumbnail preview of
the attached files is also displayed. Attachments also link to the full-size image or, in
case of documents, pdf document.

Page 84 of 84 Revision no 6 Last saved 21/07/2020 13:17

7.REFERENCES

D 2.2.1: First report describing the requirements to the Information Platform by the Geo-
energy, Groundwater and Raw Materials themes. January 2019. https://geoera.eu/wp-
content/uploads/2019/01/D2.2.1-Requirements-to-the-Information-Platform.pdf.

D2.2.2: A second report refining the requirements after feedback exchanges related to the
prototypes of the EGDI database and the display interface. January 2020.
https://geoera.eu/wp-content/uploads/2020/01/D2.2.2-Refinements-of-requirements.pdf;
https://geoera.eu/wp-content/uploads/2020/01/D2.2.2-Appendix-A.pdf.

D 2.3.1: First report mapping and describing the needed extensions to EGDI directly
related to the task 2.2. March 2019.

D 2.1.1: First report highlighting the potential synergies and overlaps between the projects
in terms of geoinformation. June 2019. https://geoera.eu/wp-
content/uploads/2019/07/D2.1.1-Potential-synergies-and-overlaps.pdf.

D4.2: Keyword Thesaurus. October 2019. https://geoera.eu/wp-
content/uploads/2019/11/D4.2-GeoERA-Keyword-Thesaurus.pdf.

D4.3: GeoERA project vocabulary. October 2019. https://geoera.eu/wp-
content/uploads/2019/11/D4.3-GeoERA-Project-Vocabularies.pdf.

D7.1: Working version Metadatabase. December 2019. https://geoera.eu/wp-
content/uploads/2019/12/D7.1-Working-version-Metadatabase.pdf

Kramolišová, P., Kondrová, L., Moravcová, O., and Kafka, Š.: Cookbook for creating
metadata records using the EGDI Metadata catalogue (MIcKA, version 6.0). April 2020.

Mintell4EU D5.3.1 Specification of steps needed for the integration of the E-MYB in the
M4EU DB.

https://geoera.eu/wp-content/uploads/2019/01/D2.2.1-Requirements-to-the-Information-Platform.pdf
https://geoera.eu/wp-content/uploads/2019/01/D2.2.1-Requirements-to-the-Information-Platform.pdf
https://geoera.eu/wp-content/uploads/2020/01/D2.2.2-Refinements-of-requirements.pdf
https://geoera.eu/wp-content/uploads/2020/01/D2.2.2-Appendix-A.pdf
https://geoera.eu/wp-content/uploads/2019/07/D2.1.1-Potential-synergies-and-overlaps.pdf
https://geoera.eu/wp-content/uploads/2019/07/D2.1.1-Potential-synergies-and-overlaps.pdf
https://geoera.eu/wp-content/uploads/2019/11/D4.2-GeoERA-Keyword-Thesaurus.pdf
https://geoera.eu/wp-content/uploads/2019/11/D4.2-GeoERA-Keyword-Thesaurus.pdf
https://geoera.eu/wp-content/uploads/2019/11/D4.3-GeoERA-Project-Vocabularies.pdf
https://geoera.eu/wp-content/uploads/2019/11/D4.3-GeoERA-Project-Vocabularies.pdf
https://geoera.eu/wp-content/uploads/2019/12/D7.1-Working-version-Metadatabase.pdf
https://geoera.eu/wp-content/uploads/2019/12/D7.1-Working-version-Metadatabase.pdf

	1. Definitions
	2. Introduction
	3. Identifying testing strategy
	3.1 What is testing and why testing
	3.2 Define the strategy
	3.2.1 User review
	3.2.1.1 Scheduling
	3.2.1.2 Users

	3.2.2 Prototypes
	3.2.3 Static code analysis
	3.2.4 Unit tests
	3.2.5 Scenarios: Integration and End to End tests
	3.2.6 Security tests
	3.2.7 FAIR assessment
	3.2.8 Performance testing
	3.2.8.1 Technical architecture
	3.2.8.2 Metrics or KPI

	3.2.9 Synthesis

	4. The EGDI Technical landscape Provides a global vision for the EGDI architecture
	4.1 Web GIS
	4.1.1 Introduction
	4.1.2 Architecture
	4.1.2.1 Production environment
	4.1.2.2 Test environment
	4.1.2.3 Architecture diagram

	4.1.3 Metrics
	4.1.3.1 Number of users
	4.1.3.2 Number of requests

	4.1.4 Envisioned scenario for performance testing
	4.1.4.1 Stage 1
	4.1.4.2 Stage 2
	4.1.4.3 Stage 3
	4.1.4.4 Stage 4

	4.1.5 Scalability issues
	4.1.5.1 Horizontal scalability via load-balancing
	4.1.5.2 Vertical scalability via raster image caching and user constraints
	4.1.5.3 Software
	4.1.5.4 Hardware elements

	4.1.6 User review
	4.1.7 Performance testing
	4.1.8 Planned improvements

	4.2 Development of a search system
	4.2.1 Introduction
	4.2.2 Architecture
	4.2.2.1 Production environment
	4.2.2.2 Architecture proposal
	4.2.2.3 Software
	4.2.2.4 CPU and RAM
	4.2.2.5 Software disk space usage
	4.2.2.6 Performance: CPU RAM disk

	4.2.3 Metrics
	4.2.4 Envisioned scenario for performance testing
	4.2.4.1 Stage 1
	4.2.4.2 Stage 2
	4.2.4.3 Stage 3
	4.2.4.4 Stage 4
	4.2.4.5 Stage 5
	4.2.4.6 Stage 6

	4.2.5 Scalability issues
	4.2.6 Users review
	4.2.7 Performance testing
	4.2.7.1 Basic stress test
	4.2.7.2 System in standby
	4.2.7.3 Advanced stress test

	4.2.8 Planned improvements

	4.3 3D viewer
	4.4 EGDI document repository search thematic application
	4.4.1 Introduction
	4.4.2 Architecture
	4.4.2.1 Software
	4.4.2.2 CPU and RAM
	4.4.2.3 Software disk space usage

	4.4.3 Metrics
	4.4.3.1 Number of expected users
	4.4.3.2 Number of requests (HTTP GET/POST/PUT…)

	4.4.4 Envisioned scenario for performance testing
	4.4.4.1 Stage 1
	4.4.4.2 Stage 2
	4.4.4.3 Stage 3
	4.4.4.4 Stage 4
	4.4.4.5 Stage 5
	4.4.4.6 Stage 6
	4.4.4.7 Stage 7
	4.4.4.8 Stage 8
	4.4.4.9 Stage 9
	4.4.4.10 Stage 10
	4.4.4.11 Stage 11

	4.4.5 Scalability issues
	4.4.5.1 General note
	4.4.5.2 Scalability on the frontend side
	4.4.5.3 Scalability on the backend side
	4.4.5.4 Testing

	4.4.6 Users review
	4.4.7 Performance testing
	4.4.8 Planned improvement

	4.5 MIcKA: EGDI metadata catalogue
	4.5.1 Introduction
	4.5.2 Architecture
	1.
	2.
	3.
	4.
	4.1
	4.2
	4.3
	4.4
	4.5
	4.5.1
	4.5.2
	4.5.2.1 Production environment
	4.5.2.2 Software components

	4.5.3 Metrics
	4.5.3.1 Number of users
	4.5.3.2 Number of requests

	4.5.4 User review
	4.5.2.3 1st round of functionality testing:
	4.5.2.4 2nd round of functionality testing:

	4.5.5 Envisioned scenario for performance testing
	4.5.2.5 Stage 1
	4.5.2.6 Stage 2
	4.5.2.7 Stage 3
	4.5.2.8 Stage 4
	4.5.2.9 Stage 5
	4.5.2.10 Stage 6
	4.5.2.11 Stage 7

	4.5.6 Scalability issues
	4.5.7 Performance testing
	4.5.8 Planned improvements

	4.6 Extensions to the harvesting system
	4.6.1 Introduction
	4.6.2 Architecture
	4.6.2.1 Software modules and version

	4.6.3 Metrics
	4.6.3.1 Number of expected users
	4.6.3.2 Number of requests

	4.6.4 Envisioned scenario for performance testing
	4.6.4.1 On the data provider side
	4.6.4.2 On European level – provided by GeoZS

	4.6.5 Scalability issues
	4.6.6 User review
	4.6.7 Performance testing
	4.6.8 Planned improvements

	4.7 Administration module
	4.7.1 Introduction
	4.7.2 Architecture
	4.7.2.1 Production environment
	4.7.2.2 Test environment
	4.7.2.3 Architecture diagram

	4.7.3 Metrics
	4.7.3.1 Number of users
	4.7.3.2 Number of requests

	4.7.4 Envisioned scenario for performance testing
	4.7.5 Scalability issues
	4.7.6 User review
	4.7.7 Performance testing
	4.7.8 Planned improvements

	4.8 Vocabulary tool
	4.8.1 Introduction
	4.8.2 Architecture
	4.8.2.1 Hardware
	4.8.2.2 Sofware

	4.8.3 Metrics
	4.8.3.1 Number of users
	4.8.3.2 Number of requests

	4.8.4 Envisioned scenario for performance testing
	4.8.4.1 Stage 1
	4.8.4.2 Stage 2
	4.8.4.3 Stage 3
	4.8.4.4 Stage 4

	4.8.5 Scalability issues
	4.8.6 User review
	4.8.7 Performance testing
	4.8.8 Planned improvements

	4.9 Monitoring system
	4.9.1 Introduction
	4.9.2 Architecture
	4.9.3 Scalability issues
	4.9.4 User review
	4.9.5 Planned improvements

	5. Synthesis
	5.1 Global architecture
	5.2 User review
	5.3 Prototypes
	5.4 Static code analysis
	5.5 Unit test policy proposal
	5.5.1 Controllers test / WS
	5.5.2 Context for taking the tests

	5.6 Security tests
	5.7 FAIR assessment
	5.8 Module improvements
	5.9 Conclusion

	6. ANNEX: EGDI document repository functionnalities
	7. References

