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GENERAL INTRODUCTION 
 
When 3D models of the geological subsurface are built on a large scale, for example on basin scale, they 
are usually based on data such as seismic and borehole measurements and on field records which often 
involve a considerable amount of uncertainty. This can be, but is not limited to, measurement 
imprecisions, necessary simplifications during the processing phase and interpretational ambiguities. 
Further, the underlying data are usually distributed unevenly, e.g. clustering in regions with 
economically interesting reserves, while being very sparse elsewhere, so that the 3D modelling involves 
interpolation across wide distances. 
This uncertainty characterizing the 3D models stands in stark contrast to the way in which the 3D 
modelling results are usually presented these days. The software packages that are used for 3D 
geological modelling, such as Skua-Gocad or Petrel, already provide visualization methods that are 
currently used to communicate the 3D models to the stakeholders or the public. Further 3D models are 
published on the world wide web, using the necessary web-technology to present these models in a 
browser. The visualization is usually done by rendering stratigraphic interfaces and faults as triangle- or 
quadrangle-meshes in 3D space and it pretends that the 3D subsurface is known exactly, sometimes 
giving the position of a mesh’s vertices with a precision of up to a millimeter. In reality, however, we 
often do not know if a certain fault should be moved up or down a hundred meters, if it extends 
hundred meters more or less, or even if it actually exists at all or has a complete different shape. How 
can we estimate and handle the uncertainty and how do we express the magnitude and different types 
of uncertainty in our 3D models? Work package 4, “Uncertainty in Geomodels” which is part of the 
GeoERA project 3DGEO-EU, will work towards establishing the necessary workflows to provide a 
visualization of the 3D models, including their uncertainty.  
This report, the second WP4 deliverable (D4.2), will give an overview of the different sources of 
uncertainty with emphasis on the methods and sources which seem to be most relevant for the 
construction of structural models. It will then show some practical examples how the propagation of 
this uncertainty into the build 3D models could be estimated using Monte Carlo simulation and/or 
Geostatistics.  
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1 INTRODUCTION 
When constructing 3D regional models of the subsurface, the geoscientist has to deal with a 
wide range of different types of uncertainty. As shown in Figure 1, the uncertainty should 
already be estimated and assessed during the acquisition and interpretation of the data which 
later form the basis of the 3D model. The location of markers for faults and horizons that are 
interpreted from borehole data is uncertain, especially when old logs from the archive have to 
be used, as the tools to determine the borehole path had, and still have, only a limited precision 
(see e.g. Wolf & Wardt, 1981). When seismic imaging is used, different sources of uncertainty 
are introduced in the different steps of the seismic processing sequence, especially during the 
time to depth conversion, as the velocity model can often only be estimated with a limited 
precision (for an overview, see e.g. Thore et al., 2002). 

During the next step, namely the geometrical modelling phase during which the 3D geological 
model is built, the propagation of the uncertainty that comes from the input data must be 
assessed and its influence on the final model estimated. Sometimes there are insufficient data 
available for a large area and the modeller has to provide some kind of model-based 
interpretation in order to fill the void space in the 3D model. So the modellers have to make a 
decision on which conceptual models they should apply (e.g. the deformation style? flexure or 
fracture?) which introduces additional uncertainty, often called conceptual uncertainty. The 
approach commonly used to assess all these uncertainties in the resulting 3D model is the use 
of Monte Carlo Simulation (see, e.g., Wellmann & Regenauer-Lieb, 2012 or Schweizer et al., 
2017). Different realizations of the 3D model are generated by first sampling into the input data. 
The depth of a borehole marker might, for example, be given as a Gaussian distribution function 
and for each realization the depth is randomly drawn from this function. Subsequently, a 3D 
model is generated for each set of randomly drawn data. These different models are then 
visualized or ideally could be summarized to be represented as one model which expresses the 
geology and its uncertainty (see, e.g. Wellmann & Regenauer-Lieb, 2012). When the resulting 
uncertain structural geological model is subsequently used for process simulation, it has to be 
propagated with attributes such as permeability, which also involves uncertainty. Many 
methods have been developed to treat this uncertainty, especially in the oil & gas and the mining 
industry to optimize exploitation and minimize risk (see e.g. Pyrcz & Deutsch, 2014). 

The last, but nevertheless important, step in Figure 1 is the visualization. When the 3D models 
generated are presented to the public and the stakeholders, they should be made aware of 
these uncertainties in those models. Currently the representation of the geological models as 
triangle- or quadrangle-meshes often pretends that the position of geological structures is 
known to a precision of a centimetre. It is one of the primary targets of this work package to find 
a good visualization which shows the uncertainty in 3D geological subsurface models and where 
this uncertainty is coming from. The visualization should be easy to understand and intuitive and 
might vary for different types of viewers, e.g. for experts and novices. 

The aim of the work package “Uncertainty in Geomodels” is to structure the whole discussion 
on uncertainty in our 3D geological models and its quantification and visualization from the 
viewpoint of geological surveys. What is already there and where are the gaps? The work 
package will provide a knowledge base to assist in the future use of the visualization methods 
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already established in geosciences and also establish the basis for future cooperation with other 
research disciplines, such as computer graphics, to fill the gaps identified. 

 
Figure 1: The different general steps to build and display a 3D geological model where the 
uncertainty has to be assessed. 
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In order to achieve this, the whole work package is structured in terms of four different tasks 
(see Figure 2). During the first half of the project, the aim of the first two tasks will be to establish 
and document the methods and concepts required. Task 1 captures the state of the art in 
uncertainty visualization (options for step 3 in Figure 1) and in this manner also provides 
information about which type of data we need to compute in order to be able to display the 
uncertainty in our models. It thus sheds light on where we might go and what we will need for 
it. Task 2 will discuss the different sources of uncertainty and the methods to propagate this 
uncertainty through the 3D modelling process (steps 1 and 2 in Figure 1). Task 3 and 4 in the 
second half of the project will apply the methods described to test different visualization 
options, using data sets from the pilot areas of the 3DGEO-EU project. 

 

 
Figure 2: General structure of the 3DGEO-EU work package “Uncertainty in Geomodels”. 

 

The overall outcome of the project will be a structured and documented overview of what is 
already available for the treatment and visualization of uncertainty and will thus act as a point 
of transfer for the necessary knowledge and skills from computer sciences to geosciences. 
Further it will try to suggest some best practices and workflows for how the visualization of 
uncertainty could be incorporated into the current standard workflows for 3D geological 
modelling. Finally the work package will identify what still needs to be developed and provide 
the necessary means, gap identification and corresponding example data sets, to give potential 
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outside partners, such as computer graphics groups at universities, the motivation to do 
research towards developing the methods lacking. 

This report is the deliverable of Task 2. It will outline the different sources of uncertainty that 
have been identified by the project members and try to describe some quantitative estimate in 
Chapter 2. Different methods to estimate how this uncertainty, coming from the primary 
sources, is propagated through the 3D modelling process and how it affects the final model. In 
a later stage of this work package, the visualization requirements emerging from this report will 
be matched to the available methods described in the report on the state of the art in 
uncertainty visualization (Deliverable 4.1) to identify gaps and optional future areas of research. 
This match will be done based on the classification / typology of data and their specific 
uncertainty. As a result, two sets of requirements will be identified. The first set consists of data 
types and uncertainty types for which visualization methods exist already and which could be 
implemented as part of a 3D viewer of the information platform (EGDI). The second set consists 
of data and uncertainty types for which no visualization method seems to have been established 
so far. Here further research will be required. The user requirements, gaps and research 
requirements found will be documented in Deliverable D4.3. Further documented example date 
sets will be provided (Deliverable 4.4). 
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2 SOURCES OF UNCERTAINTY 

2.1 Overview 
In general we can distinguish two types of uncertainty, aleatoric and epistemic uncertainties. 
Aleatoric uncertainties are induced by randomness, such as tossing a die, and are often 
associated with repeatable experiments. Epistemic uncertainty is due to imperfect knowledge 
about something that is not in itself random and is, in principle, knowable (O’Hagan et al., 2006). 
It is typically associated with unrepeatable processes and thus cannot be determined by 
experiments using statistics.   

Due to these different kinds of uncertainty, it is also worthwhile to keep the discussion of 
Frodeman (1995) on geology as an interpretive and historical science in mind. Often it is 
assumed that science should be certain, precise and predictive, and that scientific knowledge 
can be analytically derived. This holds for physics and methodically closely related subjects, such 
as geophysics and engineering. Other scientific subjects are judged in terms of how well they 
meet these standards. However, Frodeman (1995) points out that the lack of experimental 
control, the great spans of time required for geological processes to take place and the 
incompleteness of data make direct observations difficult, if not impossible. Frodeman (1995) 
thus suggests that geology should instead be seen as an interpretive (hermeneutic) science. The 
comprehension of a certain problem is built up in an iterative fashion (the hermeneutic cycle) 
as we revise our conception of the whole (e.g. a certain region) based on the new meaning 
suggested by the parts (e.g. recently examined outcrops), and our understanding of the parts 
through our new understanding of the whole. 

In practical terms, this means that geoscientific investigations lead to a wide range of 
uncertainties that are aleatoric and/or epistemic. Geologists often make use of geophysical 
methods to gain information about the subsurface. These methods follow the rules of physics 
and mostly deliver data with aleatoric uncertainties, which are, for example due to the precision 
of the measurement instruments, such as logs that are lowered into a borehole. Further, some 
information can be directly gained from outcrops but imprecisions arise due to the variability 
and imperfections of nature and the exactness with which geologists can work in the field. A 
structural measurement with a geological compass, for example, can only be read with a limited 
precision by geologists, and often varies depending on which location of bedding or cleavage 
plane in an outcrop has been chosen, due to the bumpiness and roughness of the rock. For this 
reason, it is common practice to measure the data at several locations, even in the same 
outcrop, and then to calculate the mean. These aleatoric uncertainties are often easy to assess, 
for example by using statistics in the case of field measurements or by obtaining the precision 
of the instrument from the manual of the manufacturer. 

However, the data only provide information on the physical properties for the exact location 
where they are measured and the interpretation of the acquired data and the extrapolation 
away from the measurement locations often involves ambiguities and non-uniqueness. Thus, 
interpretation relies heavily on the knowledge, ability and experience of the interpreter and so 
leads to epistemic uncertainty that is much harder to control and to assess. This becomes 
particularly apparent when data are sparse and discontinuous, and so can only be interpreted 
jointly in a limited way. To give an example: imagine a small 5x5 km area for which a 3D seismic 
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with good quality and well visible reflectors together with a couple of boreholes is available. This 
area can clearly be modeled with a much higher confidence than a 25x25 km large region for 
which only a few 2D seismic sections and a borehole is available that is even not on one of the 
sections - at least when the general background data, such as structural complexity, is 
comparable. It seems likely that this epistemic uncertainty effects geological services and their 
workflows more than industry. Most projects in industry have, due to the economic interest in 
them, relatively well-funded data acquisition and deal with relatively small-scale models, such 
as reservoirs. In contrast, Geological Survey Organizations often build large regional models, 
such as the TUNB model of the North German Basin (TUNB, 2021), the GeoMol models of the 
Molasse Foreland Basins of the Alps (GeoMol, 2021) or the TNO models of the deep and shallow 
Dutch geology (TNO 2021). Within these areas, they might have some regions with good data 
coverage, but between these regions, large spaces appear often where data coverage is small. 
This becomes especially true for the deeper underground. 

The epistemic uncertainty that is based on the different possible interpretations and the way of 
reasoning is much harder to assess, because it requires that people would need to quantify with 
what probability they follow a certain line of reasoning. The experts would need to make a 
choice regarding which hypothesis is most likely and estimate its probability in comparison to 
the other hypotheses. Baddeley et al. (2004) and Tversky and Kahnemann (1974) explain that 
this judgement of probability is prone to make some common mistakes, due to cognitive 
limitations in the processing ability of the human mind, which lead to biases in the estimation. 
Based on (a) Baddeley et al. (2004), (b) Tversky and Kahneman (1974) and (c) Bond (2015) the 
following hierarchy can be sketched to give some examples: 

o Individual bias: 
• Motivational bias: This reflects the interests and circumstances of individual experts. 

They might want to appear knowledgeable because their job depends on the decision or 
they might be influenced, or even forced, by their management, to favour a certain 
solution. This bias is usually under rational control and thus can be manipulated and 
controlled.  

• Cognitive bias: This reflects the incorrect processing of information and is not under 
conscious control. The reason for this is that experts often rely on heuristics or rules of 
thumb that are based on their experiences and which they use to make relatively quick 
decisions in uncertain situations: 
 Availability (a, b, c): The probability is assessed by the ease with which occurrences of 

an event is brought to mind. This might, for example, be influenced by the most recent 
and prominent or most interesting field or interpretation examples an interpreter 
might have had experienced. 

 Anchoring and adjustment (a, b, c): Often an initial value for the probability is 
estimated or has already been given – known as the ‘anchor’ - and then needs to be 
adjusted due to new or additional information. This often leads to results which have 
a bias towards the initial value. 

 Control (b): People have the tendency to act as though they can influence the 
situation, even if they cannot. So, even if the process is completely random, people 
prefer to make a choice. 
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 Representativeness (a, b): Probabilities are evaluated by the degree to which an object 
A resembles, for example, a class-template (e.g. a stereotype) B. If A is similar to B, the 
probability that it belongs to B is assumed to be high, otherwise it is considered to be 
low. This involves several pitfalls: 

• The prior probability is often neglected (base-rate neglect) - what is the 
probability that A belongs to class B without any comparison? 

• When a series of trials all have the same outcome, people expect that the 
probability of the other outcomes rises. In reality it is always the same (gambler’s 
fallacy). 

• When events are compounded, people tend to overestimate events which are 
compounded using the logical ‘and’ and to underestimate events that are 
compounded using the logical ‘or’. 

 Confirmation (c): Hypotheses are favoured that confirm the interpreter’s own beliefs. 
 Optimistic (c): Overestimation of the likelihood of positive events, as the interpreter 

wants things to come out for the best. 
o Group bias: 

• Paradigm anchoring (a): Often the beliefs of experts are anchored to the existing 
dominant paradigm and thoughts are forced to stay within certain boundaries. 

• Herding (a): Experts might have incentives to follow the opinion of other experts, for 
example when they assume that their estimations are based on better information. The 
opinion of the other experts is than treated as being part of their own prior information. 

However, when looking at possible explanations for some of the cognitive biases given above 
(see, e.g., Kahneman, 2011), these often have their roots in insufficient control of our automatic 
and quick way of thinking that is not under voluntary control and helps us, for example, to 
recognize if a person is in good mood or aggressive (System I in Kahneman, 2011). This is often 
used instead of a more effortful and deliberate way of thinking that also might include complex 
computations (System II in Kahneman, 2011). Most of the experiments that are given to 
showcase these effects require quick decisions on fairly easy tasks. However, creating a reservoir 
model, for example, from a couple of seismic sections and additional borehole information, 
usually takes a long time and involves moving from one section to the next and back and forth, 
possibly following more the way of reasoning described in Frodeman (1995). So the question 
remains as to whether these two situations can be compared. 

When several experts are involved, it might also be worth looking at the group dynamics and 
being aware of the influences the individuals might have on each other. Kahneman et al. (2021) 
suggest, for example, that it is important to let the individuals in a group first work out and write 
down their judgements of different possible interpretations independently before discussing 
this as a group. Otherwise there is the risk that the expert group is subject to informal cascades, 
where the view of the first expert who explains his opinion influences the views of the others. 
In order to elicit the information on probabilities from the interpreters, it is therefore necessary 
to use appropriate methods (see, e.g, Curtis & Wood, 2004, or O’Hagan et al., 2006). Further 
Polson & Curtis (2010) made experiments and pictured how experts might change their view 
during a group elicitation experiment. This experiment also shows that expert’s views can have 
a relatively wide range when the data are ambiguous and imprecise, and that therefore results 
from an expert should not be seen as unique.  
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The following sub-sections outline the sources of uncertainty which the different project 
partners have identified during the 3DGEO-EU project and give an overview of the available 
literature. During the starting phase of the work package a questionnaire was used to assess 
which data types and acquisition methods are mainly used as input data for the construction of 
3D geological models (see Figure 3). As can be seen, there is a strong emphasis on borehole data 
and seismic data, followed by the current maps, which are an interpretational product itself for 
which the uncertainty has usually not been assessed in the past. Sometimes the field record is 
used, and sometimes potential field methods are used to constrain the model further. The use 
of gravimetric methods, even if not used very frequently by most of the project partners, is an 
important part of one of the work packages in the 3DGEO-EU project and a more detailed 
discussion of the overall workflow applied and the corresponding uncertainty is given in 
Deliverable 6.4 (Pueyo et al., 2021). 

Further the focus is placed on those sources over which the partners have influence during their 
work. The seismic data that are used, for example, are mostly acquired by external companies 
and have been preprocessed, stacked and migrated by these companies. Sometimes the 
uncertainty is given in the accompanying report. In such cases, the project participants do not 
have the necessary experience to elaborate further and they potentially do not have the 
necessary data and software to assess the uncertainty. However, in these cases this report will 
try to point to relevant literature that can be used as starting point. 

 

 
Figure 3: Frequency of usage of different data types by the project partners involved in 3DGEO-
EU Work Package 4 (Uncertainty in Geo-Models) for structural modelling of the geological 
subsurface. However, the figure reflects neither the overall usage of data in their organization 
nor the usage of data for other purposes.  
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Overall the assessment during the starting phase has shown that the assessment of the 
uncertainty of the generated 3D models is still in its infancy and has only been done recently by 
very few of the project partners. 

 

2.2 Uncertainty from borehole data 
Overall, there are several factors that influence the precision of a borehole geophysical 
measurement. The following section focuses on factors which affect the precision and accuracy 
of depth and positional information from borehole geophysical measurements: 

• Uncertainty of the borehole trajectory 
• Uncertainty of the tool position in the borehole 
• Uncertainty in depth interpretation of formation boundaries. 

However these different factors are not interdependent. They each have to be analyzed 
regarding their magnitude, and the resulting uncertainties have to be combined. 

2.2.1 Uncertainty in the borehole trajectory 

The borehole path is usually calculated from the measured depth (MD) along the borehole, the 
inclination (deviation from the vertical borehole path in degree) and the azimuth of this 
deviation in degree (angle to the north axis). For most tools (not for Gyro tools), conditions for 
a correct deviation measurement are a complete stop and a stable position of the tool. 
Consequently, deviation surveys are performed at certain intervals/steps (nowadays every 3-
4m, in former times 25-100m). It should be kept in mind that these step lengths are also 
uncertain, as there is a depth measurement error, for example due to friction of the tool in the 
hole, which was estimated by an operator to be between MD*0.2*10-3 and MD*1,5*10-3 (Wolff 
& Wardt (1981). The borehole trajectory is then calculated as a succession of individual straight 
segments from these measurements. Changes in borehole trajectory in between the stations 
will not be recorded and lead to an additional uncertainty. The effect will increase for large 
station intervals.  

The uncertainty in these individual measurements of azimuth and inclination depends on the 
type of tool that has been used.  

• Single- and multishot devices (used in open holes, not ore-bearing formations): These tools 
use a gimbal-mounted magnetic compass for the registration of the azimuth and a 
pendulum for measurement of the inclination of the borehole. For early tools, the compass 
readings and the position of the pendulum are photographed in the borehole and recorded 
on a film (Fricke & Schön, 1999). The magnetic compass is covered with a glass panel with a 
compass rose with a 5-10° scale division for the azimuth reading and a 1-2° scaling for the 
inclination reading (Lehnert & Rothe, 1962). For analogue compasses, azimuth readings in 
between the tick marks are possible to a precision of about ±2° (Inglis, 1987) and inclination 
readings with an accuracy of about 0.5°. Digital compass tools with a higher precision are 
able to measure the azimuth as precisely as about ±1° and the inclination by about 0.1° 
(Wolff & Wardt, 1981). However, inaccuracy of single- and multishot devices can be higher 
due to the daily fluctuation of the declination of the earth’s magnetic field (to the order of 
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0.1°), magnetic storms (several degrees), the presence of ore (several degrees) or bad 
borehole condition affecting the reading on the glass panel. Additional uncertainty on the 
readings is introduced by the magnetization of the drill collar, which influences the 
deflection of the magnetic compass needle. This effect depends on the current direction of 
the borehole and is shown to be higher for highly inclined boreholes and for east-west 
trending boreholes. Wolff & Wardt (1981) calculate an example where they show that this 
error can be up to several degrees. 

• Gyro instrument (used in open and cased holes, as well as in ore-bearing formations): The 
installed gyro instrument can freely move about any axis. As is usually the case for normal 
gyros, throughout the survey a drift (affecting only the azimuth reading) is observed. 
Compensation is performed by assessing the closure based on the linkage of the up- and 
down-run. The usage of “north-seeking” gyro (rate gyro) can reduce (not entirely eliminate) 
the drift effect. In nearly vertical boreholes, processed data of a measurement with a well 
calibrated gyro and a precisely determined orientation at the surface, allows an accuracy of 
the azimuth measurement to less than ±1° and a quite precise reading of the inclination 
about 0.03° (Wolff & Wardt, 1981). Internal experiments at the LAGB (Landesamt für 
Geologie und Bergwesen - the Geological Service of Saxony-Anhalt), including repeated 
measurements and several processed gyro surveys, indicate that the achieved precision of 
the azimuth reading in a borehole that is about 30° inclined decreases to 2°, even if the 
technical precision of the instrument that is given by the manufacturer is higher. 

• Strain gauge tools (used in cased holes, as well as in ore-bearing formations): These tools 
are used in the drill string and are equipped with accelerometers to measure the inclination. 
The measurement of the azimuth is performed by means of small spring-loaded wheels, 
which run at the inner side of the rods. A bending of the drill string results in changes in the 
length of the springs, which are transformed to changes at the strain gauges and converted 
to a difference in azimuth to the previous measurement. In contrast to the accuracy quoted 
by the manufacturers (inclination about 0.2° for total borehole length, azimuth about 0.01° 
per reading), repeated measurements done by LAGB in the field in inclined boreholes 
revealed an inclination accuracy of about 0.5° and an azimuth accuracy of about 0.02° per 
reading.   

• All tools – poor centralization: During a measurement, the compression of the centralizers 
of the tool may differ due to the rugged borehole wall or twist of the wireline. As a 
consequence, the tool will slightly rotate and/or misalign from the vertical axis. This effect 
is smaller for tools running inside the casing and/or if it is rotated in between the 
measurements (strain gauge tools). Consequences of bad centralization become even worse 
in inclined boreholes and can be to the order of 1° (Wolff & Wardt, 1981). 

Some of the measurement errors are dependent on the region in which they are measured and 
it can be assumed that the precision of the instruments and the overall technology has improved 
over time. Wolff & Wardt (1981) give typical values for these measuring errors in the North Sea 
based on the state of the art at that time and discuss how these errors could be aggregated 
along the boreholes and be presented. 

However, even if nothing is known regarding the instrumentation and measurement 
procedures, for example in old reports, some minimum uncertainty can be estimated from the 
given numbers, as it is common practice to give the readings with the precision with which they 
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can be done. Looking at some reports, the inclination was often given with one decimal place 
which shows that the uncertainty is at least 0.05°. Further the azimuth was sometimes given in 
5 degree steps which indicates that the uncertainty is at least +- 2.5 degrees. To gain an insight 
into the magnitude of the errors introduced by such an uncertainty, we have used an 
approximately 4000 m long borehole in Skua-Gocad and assumed the extremum, a constant 
drift of the instrument with +0.05 / -0.05 degree in inclination and +2.5 / -2.5 degree in azimuth. 
In the first case, the spread of the resulting borehole paths at the bottom was of the magnitude 
of 6m and in the second case of the magnitude of 30m. 

2.2.2 Uncertainty of tool position in the borehole 

Besides the inaccuracies in determining the trajectory of the borehole in the subsurface, 
additional uncertainty is caused by the missing control on the positioning of the tool inside the 
borehole (see Figure 4 for an example). As described in section 2.2.1, a tumbling of the tool 
results on the one hand in inaccurate deviation measurements. On the other hand, the 
interpretation of orientation measurements will be affected. 

Uncertainties may exist as well about the depth of a specific measurement in the borehole 
(affecting all borehole geophysical measurements). Main reasons for this are local friction and 
the sticking of the wireline at the borehole wall, lengthening of the wireline due to high 
temperatures and its own weight as well as differences in the twist of the wireline. Without a 
correction for these effects, resulting depth uncertainties are of the order of MD*0.2*10-3 and 
MD*1.5*10-3 (MD = measured depth [m]) (Wolff & Wardt, 1981). These inaccuracies can be 
reduced by the use of a casing collar log (magnetic or electromagnetic tool) combined with a 
gamma ray sensor. The casing collars will be located as precisely as MD*0.1*10-3 and can be 
linked to the other geophysical measurements by the gamma ray log. 

2.2.3 Uncertainty in the depth interpretation of formation boundaries 

Often the positions of the stratigraphic interfaces along the boreholes (borehole markers) and 
other important geological features are taken from bore logs, databases or drilling reports. In 
these cases it would be important to examine how the location of the markers (interfaces) has 
been determined and to estimate or assess the corresponding uncertainty. 

• The position of the stratigraphic interfaces could be derived from the lithology which is often 
interpreted by the well-site geologist and the mud loggers from drilling cuttings or from 
borehole interpretations. However, there are several uncertainties involved when defining 
the depth of the stratigraphic interface as the result of observations in the drilling cuttings. 
The drilling cuttings often need several hours to be transported from the bottom of the well 
to the top with the drilling mud. Experiments by Naganawa et al. (2018) show that they are 
dispersed during the transport, resulting in a log-normal distributed arrival that has 
increasing variance (smearing) in highly deviated or horizontal boreholes. Further, the cross 
section (volume) of the borehole and so the velocity of the drilling mud is not known exactly 
and the cuttings are usually collected as composite samples for an interval that could be, 
e.g. according to Whittaker & Morton-Thompson (1992), 10 feet. When interpreting a 
stratigraphic interface from a certain set of cuttings, two different types of uncertainties 
have to be considered. Firstly the uncertainty of the depth in the borehole from where the 
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set of cuttings is coming, and secondly the uncertainty that the deduction of having found 
the interface is correct at all. 

• The position of the stratigraphic interfaces can be directly derived from well logs. To obtain 
accurate depth information, it is necessary to account for the tool’s reference point (depth 
position of the sensor inside the tool or if several sensors are necessary for a reading, the 
midpoint of the arrangement is required). Not accounting for these differences will lead to 
uncertainties to the order of up to 1m. Nowadays, most borehole geophysical tools are 
equipped with a gamma ray sensor. During processing the depth shifts observed between 
the gamma ray logs of the different tools also allow a correction for the differences in their 
reference point. The resultant accuracy of the depth information is about 0.2m. 

In practice (and as a rule of thumb), stratigraphic boundaries are usually assigned at the 
turning point of the log’s curve. However, an exact determination of the interface (slightly 
off the turning point) varies for the different borehole geophysical measurements and 
requires additional factors to be taken into account, such as the setting of the tool, the 
logging speed, the thickness of the layers, the characteristics of the upper/lower formation, 
the signal-to-noise ratio, resolution of the data and in some cases the time constant of the 
measurement. Finally, the characteristic of the interface itself (distinct or gradual) has an 
influence on its exact determination (e.g. Reading & Gallagher, 2013). If some of the 
acquisition parameters are unknown or not accounted for, uncertainties in determining the 
correct depth of the interface are for most scenarios in the order of 0.2-1.5m. 

Measurements recorded with an analogue system (such as is the case for most surveys 
in the former GDR) carry an additional uncertainty. After recording and as preparation for 
the subsequent interpretation, all curves were manually redrawn and merged on large 
sheets of paper. As usual, such a transfer is problematic and observed depth errors have 
magnitude of up to 2m. 

• Finally the position of the geological features could be derived from cores, which should be 
the most precise source of information. However, in highly fractured or weathered zones, a 
quite considerable amount of material might already have been washed out by the drilling 
fluid. The same might be true for sections of anhydrite or salt, which might dissolve when 
coming in contact with the drilling fluid. Further, careful tracking of the orientation of the 
core is required, even when experiencing problems in retrieving the rods (with the core 
inside) as well as during the boxing up of the core. 

 

2.2.4 Uncertainty of inclination measurements in boreholes 

As will be discussed further below, some of the 3D modelling approaches can not only take the 
depth and position of a borehole marker as a constraining input but also its orientation (see e.g. 
Calcagno et al., 2008). Stigsson and Munier (2013) discuss the uncertainty of orientation 
measurements for fractures, done on the basis of borehole image data, and how these are 
affected by the uncertainty of the borehole orientation. Presentation and discussion is done on 
the basis of a Stereonet (Equal Area Projection). 
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Figure 4: Example from a borehole in Saxony-Anhalt (drilled in the 1980s), demonstrating two 
factors influencing the accuracy of depth information from borehole logs. 1.: Former merging of 
the different runs with system 1 caused problems in depth correlation and amplitude. 2.: The 
caliper measurement was repeated with a second system, consisting of different tool, wireline 
and recording unit. Comparison between the surveys reveals an extension of the wireline of 
system 1 (measured temperature in 4000 m depth was 149°C). 

 

2.2.5 Potential errors in a database with boring records 

Often and especially when large datasets are used, the measured depths of borehole markers 
are directly taken from databases. Thus the original borehole information, which in general 
stems from printed reports collected over decades, became digitized, reinterpreted and 
sometimes converted into modern stratigraphic encryptions. Afterwards interpreted 
stratigraphic or petrographic boundaries were converted into the model’s stratigraphy using 
mapping lists. Due to the large amount of borehole information and its heterogeneity, the 
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question arises as to how reliable these data are and which kinds of discrepancies probably lead 
to uncertainties for the modelling process. Although this cannot be assessed in general, the 
following discussion will provide an idea for uncertainty estimates. 

• Typing errors in stratigraphic/petrographic encryptions: Typing errors can occur during 
each digitalization step, when borehole data are entered into a borehole database 
(horizontal and vertical position, measured depth, stratigraphic encryptions, etc.). Due to 
the fact that modern database systems are commonly supported by dictionaries and thus 
propose legitimate encryptions for stratigraphy, petrography and genesis, typing errors in 
encryptions can be reduced to a certain degree. Nevertheless, the use of dictionaries does 
not prevent the digitizer from deciding which encryption is correct for the region where the 
borehole was drilled (e.g. International Chronostratigraphic Chart; Cohen et al., 2013; vs. 
Stratigraphische Tabelle von Deutschland; German Stratigraphic Commission, 2016; vs. 
Symbolschlüssel Geologie; Landesamt für Bergbau, Energie und Geologie; 2015). Thus, even 
if spelling and grammar of encryptions equates to dictionaries, we cannot fully assume that 
the encryption corresponds to the regional geology. 

• Typing errors in coordinates and depths: Typing errors in the position of markers or 
coordinates of complete boreholes can arise during each step of digitalization and are 
difficult to detect. Typically, they arise when single digits of coordinates or depths were 
incorrectly typed. Although the appearance of typing errors is relatively low (< 2 % of typed 
boreholes/markers), single errors might heavily affect the precision of information. If several 
hundreds of boreholes are used for 3D modelling, we have to suspect that at least some of 
them are represented at an incorrect position. Furthermore, we have to keep in mind that 
approximately 30 % of boreholes contain at least one incorrect marker position. Although 
for deep boreholes (several kilometers deep) with several hundreds of markers that error (< 
1 %) might appear insignificant, the bulk of the errors (approx. 73 %) show a deviation larger 
than 10 meters in depth (Figure 5) and thus is not insignificant. 

• Stratigraphic interpretation/encryption stored in borehole databases: Stratigraphic 
interpretations and encryptions in borehole databases depend heavily on the interpreter's 
choice during rock classification, stratification and well-log evaluation. That is why borehole 
databases typically contain a strongly heterogeneous inventory. Interpretations and 
descriptions are based on the stratigraphic knowledge and encryption at the time when the 
borehole was interpreted. Typically it is performed for one single borehole. Afterwards, i.e. 
after further analysis (e.g. micro paleontological, petrophysical or geochemical analysis) or 
regional correlations, boreholes often become re-stratified and re-interpreted, which leads 
to various geologic profiles for single boreholes. They contain descriptions and encryptions 
based on schemes current at that time. These schemes may have changed since the 
borehole was originally interpreted (Franz et al., 2018; Hiss et al., 2018; Mönnig et al., 2018 
and references therein) or vary across regional, geological, prospective or political borders. 
Thus borehole database information can be strongly heterogeneous, vary over small 
distances and contain inconsistent data, if no standardized schemes and interpretations 
were used. 

• Conversion of borehole information into model stratigraphy: Due to the large number of 
boreholes (some hundreds of thousands) stored in databases, a unified stratification and 
encryption is most often not warranted. Hence, converting stored information into model 
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stratigraphy is not a straightforward process and has to be considered with care. Encryptions 
vary from one borehole to another with respect to their level of detail. Even for smaller 
models (i.e. some tens of square kilometres) containing some hundreds of boreholes, the 
number of different encryptions can easily exceed several thousands. These encryptions 
need to be systematically generalized and summarized with respect to the model resolution 
and detail. 
 

 
Figure 5: Diagram illustrating the deviation in depths due to typing errors. For analysis 835 deep 
wells (drilled by the petroleum industry) from the borehole database of Saxony-Anhalt were used. 
A running number generated during along-depth digitalization enabled us to determine the 
range of uncertainty. 274 boreholes (32.8 %) contain at least one typing error (0.4 % if assuming 
approx. 250 markers per well). 

  

2.3 Uncertainty from seismic data 
As can be seen from Figure 3 on page 12, reflection seismics is very often used by the different 
project partners and the assessment of its uncertainty is for this reason important to estimate 
the uncertainty in the 3D models generated. However, the different project partners of the 
GeoERA project 3DGEO-EU mainly work with data that where processed by third parties (e.g. by 
the oil & gas industry), and for this reason mostly have no option to do an analytical error 
estimation. However, instead of trying to do such an error estimation descriptive statistics could 
be used at several phases of the project to get an insight into the uncertainty that is due to the 
different processing problems described above. 

In the following a short introduction on the different sources of uncertainty will be given, 
pointing to some relevant literature. Then different options will be discussed to assess the 
uncertainty experimental, using statistics, and finally we will give some examples on the 
uncertainty that arises due to interpretational issues. 
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2.3.1 Overview of the sources of uncertainty in seismic data 

Thore et al. (2002) discuss the uncertainty in the final structural model due to the different 
seismic processing steps (acquisition, preprocessing, stacking, migration, interpretation and 
time-to-depth conversion). According to them, the errors and imprecisions during the 
acquisition, preprocessing and stacking phase will mainly lead to a fuzzy or possibly worse to an 
absent image but will not dislocate the reflectors, and thus will not increase the uncertainty in 
terms of positioning features of the structural model. In contrast to this, the latter three phases 
have a major impact on the structural uncertainty. 

For the migration and the time-to-depth conversion, this is due to the uncertainty in the velocity 
model and most likely will shift horizons, faults and other structural elements, such as salt 
structures, while keeping the overall topology of the structural framework. Parkes & Hatton 
(1987) describe how ray-theoretical modelling together with perturbation of the velocity field 
(Monte Carlo simulation) can be used to study the influence of errors in the velocity model on 
depth- and time-migration on a 2D section. Loveridge et al. (1987) extend this approach to the 
3D case but are limited to studying the effects on time-migration. While the influence of 
uncertainty in the velocity model on the generated depth-migrated image is high, the influence 
on a time-migrated image is fairly small. The migration error is greatest where dip is steepest 
and is proportional to the displacement and hence to the magnitude of the dip. Overall 
Loveridge et al. (1987) conclude for time-migration with an uncertain velocity field, that the 
migration error is small in comparison to migration displacement. 

During the interpretation phase multiple sources for uncertainty exist, such as the precision with 
which the different reflectors are picked. Further, an additional uncertainty is added during the 
interpretation phase that is due to the quality (contrast, continuity) of the seismic image and 
the fact that it is often unclear which geological concepts should be applied (conceptual 
uncertainty). This uncertainty affects not only the position of the geological structures but the 
topology of the structural model. The conceptual uncertainty can be reduced when borehole 
information is available and information on the geotectonic history and deformation style can 
be used. 

Finally the time to depth conversion creates uncertainty about the final position of the horizons 
and geological structures. Thore et al (2002) estimates that this uncertainty often contributes 
up to, or more, than 50% to the overall uncertainty in rock-volume estimation. This is mainly 
due to the large uncertainty in the velocity model. 

In the following subsections we will first show how the overall uncertainty inherent in the depth 
of reflectors in 2D seismics could be estimated statistically and independently of its physical 
sources when a sufficiently large number of crossing 2D sections are available. This could be 
seen as a useful approach to estimate statistically the lower bound for the uncertainty of the 
depth of the reflectors in the time-domain, which is due to the first four processing steps 
(acquisition, preprocessing, stacking and migration). The approach could be used when no 
systematic treatment of uncertainty for these steps is available. We will then discuss in a little 
more detail which interpretational problems with 2D seismic could arise, using a 2D seismic 
section from the German North Sea sector. Finally we will show how a velocity model that 
incorporates the uncertainty could be constructed, using an example from the Netherlands. This 
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uncertain velocity model could then be used to assess the uncertainty in the time to depth 
conversion (see section on uncertainty and 3D modelling below).  

2.3.2 Statistical estimation of horizon misties on 2D sections 

Sometimes, for example in the North Sea, a large number of 2D seismic sections are available 
that are not all parallel to each other and so define a number of intersections. Reflectors that 
are visible on both crossing sections should match at the intersection but often do not. This is 
due to the different uncertainties mentioned above. The seismic sections might have been 
processed in a different way and with different quality, and further the migration is only done 
on the section while clearly migration components that point out of the section should be 
involved. Evaluating the misties at all intersections could potentially give an overview of how 
large the uncertainty is without necessarily having to understand where it is coming from. In 
order to illustrate this, we have estimated the misties for two horizons on a large set of crossing 
2D seismic sections in the German North Sea which are currently used for constructing a 3D 
model of the deeper subsurface within the project TUNB (TUNB, 2020). Figure 6 shows the 
crossing points located on a map and coloured according to the magnitude of the misties. On a 
few occasions (see below) they can become very large and so the colour scale has been clipped 
at 100ms.  

 

 
Figure 6: Uncorrected misties for the T1 (base Tertiary) reflector of crossing 2D seismic sections 
in the German North Sea sector. Colours indicate the magnitude of the mistie and are cut at 
100ms, so that misties above 100ms are coloured all in red. Black lines indicate the borders of 
the German Sector and the German coastline with the North Frisian and East Frisian isles. Pink 
areas in the background indicate the approximate extend of the major salt structures (salt 
diapirs, salt domes and salt walls). 
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As can be seen from the histograms in Figure 7, only a small fraction of the misties for the KR2 
and T1 reflectors are larger than 50ms. As it is not known which of the two sections that are 
crossing is actually wrong, only the absolute value of each mistie is taken which leads to this 
asymmetric histogram shape.  

 
Figure 7: Histograms for the misties of the Kr2 (left) and T1 (right) reflectors. 

While most misties for both reflectors are below 50ms, some may have a much higher 
magnitude of up to and seldom even more than 200ms. It has been suggested that these high 
misties might be caused by salt structures in the subsurface. In order to test this hypothesis, we 
have calculated the map distance to the salt structures (pink areas in Figure 6) and generated 
cross-plots of map distance against mistie. As can be seen from the cross plots all points that 
exhibit a high magnitude for the mistie, for example are higher than 75ms, are near to salt 
structures (closer than 5000m). 

 

 
Figure 8: Cross plot of the map distance to the salt structures (vertical axis in meters) versus 
mistie for the Kr2 reflector (left) and the T1 reflector (right), given in milliseconds on the 
horizontal axis. Points falling onto a salt structure polygon have a distance of zero.  
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Further, as can be seen from Figure 9 the misties for the different reflectors are completely 
uncorrelated. 

 
Figure 9: Crossplot for the misties of Kr2 against T1 for the points where both data are available 
(in milliseconds). 

2.3.3 Uncertainty in seismic interpretation 

One contribution to uncertainty from seismic imaging that is large but very hard to quantify is 
the uncertainty that is generated by the fact that the conceptual model, which should be applied 
by the seismic interpreter, is often not sufficiently known (see Figure 1, Step 2 in Chapter 1). For 
this reason, geoscientists use their training and experience (i.e., their prior knowledge) to apply 
a concept to the data in order to perform an interpretation (e.g. of seismic images) and, for 
example, to finally produce a geological or structural 2D or 3D framework model. However, this 
application of prior knowledge or assumption is often subject to uncertainty. This conceptual 
uncertainty e.g. comes into effect when a seismic image has to be interpreted but not many data 
such as sparsely distributed borehole data or other general geological constraints (e.g. tectonic 
setting, regional geodynamic history etc.), are available. Accordingly, conceptual uncertainty 
always includes methodologically based uncertainty due to data distribution, quality and 
quantity. This is especially important for the interpretation of 2D-seismic data. The first 
challenge is that the interpreters have to extrapolate their concept from one seismic line to the 
next. In addition, the lines often consist of different surveys, different ages and processing, and 
therefore also very different quality. This is especially important for the interpretation of salt 
structures, where an image of the salt structure flanks and top can change from line to line. 
Consequently, in such a multi-survey case the dependence of conceptual uncertainty is more 
obvious as in the case of uniform coverage by only one survey of same quality. One might think 
that the error caused by the application of wrong concepts is reduced by the acquisition of 
modern 3D seismic data. However, even the complete coverage with modern 3D seismic data 
does not guarantee the complete imaging of the subsurface in the same good quality and the 
avoidance of interpretation errors. With the increasing heterogeneity of the subsurface, only 
small impedance contrasts of the units under investigation and a complex sub-surface structure 
with diapirs and faults, a high degree of fuzziness in the data has often still to be accepted even 
with today's techniques. So, there are many different uncertainties that can build on each other.  

Bond et al. (2015, 2008) have investigated this uncertainty coming from the ambiguity of seismic 
images and the influence that biases have on the results of the interpreters. They mainly 
differentiated following types of biases: 
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• Availability bias. The decision, model, or interpretation that is most readily brought to mind. 
• Confirmation bias or/and hypothesis testing bias. To seek out opinions and facts that 

support one’s own beliefs or hypotheses. 
• Anchoring bias. Failure to move away from experts’ initial beliefs, dominant approaches, or 

initial ideas. 
• Optimistic bias or/and positive outcome bias. ‘It won’t happen to me’ mentality or ‘there is 

definitely oil in this prospect!’ 

Bond et al. (2007) suggest that an interpretation, and therefore the resulting initial geological 
framework model, is a fundamental source of uncertainty because it is dependent on the 
tectonic paradigm or concept used in its construction (i.e. the interpreters bias). As a 
consequence, Bond et al. (2007) also argue that conceptual uncertainty can be more important 
than the uncertainty inherent in the positioning of horizons or fault planes in a framework model 
or in the subsequent populating of these features with petrophysical properties. In order to 
illustrate consequences of conceptual uncertainty in seismic interpretation Bond et al. (2007) 
carried out an experiment with 412 subjects interpreting a seismic image that they generated 
artificially from a constructed and consistently restorable 2D geological section that has been 
generated using the software 2D Move (@Petroleum Experts, former Midland Valley). 

The experiment showed that a large range of interpretations could result from a single data set. 
In this case, only 21 % interpreted the example in the right way and only 23 % found the given 
major faults strands in the image. In a later study, they further investigated the acquired data 
and showed that two main factors for finding the right interpretation are the breadth of tectonic 
education/knowledge (equivalent knowledge of different tectonic settings and how to interpret 
seismic data from this region) and the incorporation of evolutionary processes (e.g. kinematics) 
into the interpretation workflow. Bond et al. (2007) suggest that other factors, such as an 
individual’s training and the techniques used to interpret the section, may have more influence 
on interpretational outcome than tectonic expertise. 

In the experiments by Bond et al. (2007) users had no additional information, such as tectonic 
settings, geodynamic history or well information. Fortunately, in most of the cases such 
information is available. 

The effect of the breadth of interpreters’ education/knowledge on seismic interpretation was 
also investigated by Alcalde et al. (2017b). They used a classroom environment to investigate 
and show that the knowledge of a high variety of different structural fault models has an impact 
on the interpretation of a 2D seismic section, as the interpreters have more options to recognize 
or fit one of the different available models to the shown data, even to parts of the seismic section 
with lower image quality. Thus, one important factor seems to be to make the interpreter 
resilient to availability bias (for an overview of different biases in geosciences see e.g. Wilson et. 
al, 2019). This kind of uncertainty is hard to capture quantitatively. Possibly several 
interpretations which are each based on one of the different concepts could be made and then 
subsequently used in the 3D modelling phase in a Monte Carlo style process.  

Another source of uncertainty in seismic interpretation is insufficient image quality, so that the 
seismic does not define geological features in a sufficiently unambiguous way in terms of course 
and extent. Schaaf & Bond (2019), for example, use a classroom environment in which 78 
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individuals interpreted the same region of a 3D seismic cube, in order to investigate the 
uncertainty in the interpretation of faults and horizons from 3D seismics. They show that the 
variability in the location of fault sticks can be correlated with the quality of the seismic image, 
which is assumed to be represented by the root mean squared amplitude (RMSA) of the image 
at the different locations. Alcalde et al. (2017a) describe a similar investigation for a 2D seismic 
section and show that the uncertainty in the interpretation increases when the contrast in the 
seismic image (here a grey-scale image) or the continuity of the reflectors decreases. Often 
uncertainty in seismic interpretation is a combination of the above-mentioned factors (limited 
information, image quality, structural complexity, interpreter’s knowledge as well as other 
biases). 

Several examples of the uncertainties that are inherent in seismic interpretations are given from 
data in the North Sea. In this area, salt structures are very common and many uncertainties in 
the interpretation are due to the limitations in the seismic imaging of these salt structures. Salt 
has a high seismic wave velocity (often more than twice that of surrounding sediments) which 
can result in strong refraction and reflection at the salt-sediment interface and energy loss of 
seismic waves. This in turn can result in an image with low quality of the immediate surrounding 
of the salt structures, especially below salt overhangs. A common consequence of this is that 
the ideal external form of the salt structure is not represented accurately in the seismic image, 
resulting in ambiguities in the interpretation of the external form of the salt structure. Although 
this also applies to faults and discontinuities especially in the basement of sedimentary basins, 
such effects are often less prominent in the seismic image for these linear structures than for 
salt structures. 

Figure 10 shows a seismic section from the German North Sea Sector as an overview where 
different ambiguities may occur. The different examples that are visible in this section are now 
explained in more detail. 

 
Figure 10: Exemplary (time-migrated) seismic section in the German North Sea (representative 
of many of the newer data sets in the German North Sea) that crosses salt structures and shows 
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different spots (red rectangles) where the interpretation is uncertain due to various reasons. The 
greatest interpretation uncertainties arise in the vicinity of salt structures and below them. 
However, sedimentary structures in the shallow overburden or steep faults in the basement, 
which are outside of the representation and processing focus of the seismic, are not sufficiently 
represented. 

 

Example 1: Outer shape of salt structures 

Figure 11 shows a subsection of Figure 10 along the smaller salt structure on the right side of 
the image. Besides the seismic image, no further information (e.g. well data) is available for the 
interpretation of the shape of the salt structure. For a clear interpretation of the outer shape of 
the salt structure and the bedding geometry along the salt-sediment-contact, the quality of the 
seismic image is not sufficient (Figure 11-a). Therefore, several interpretations of the salt 
structure shape are valid from given information. Figure 11-b and Figure 11-c show two 
conceptual end-members of salt-structure growth which have great impact on the resulting 
structural evolution of this salt structure. The two interpretations favour different modes of 
diapiric growth which implicate different rates of subsidence or salt movement and differences 
in the continuity of the processes. In both cases the diapir started as a reactive structure by 
extension of the sedimentary cover on top of the salt-layer, highlighted by the asymmetry in the 
pre-kinematic layers and the rollover below the „left“-rim-syncline. After that first reactive 
pulse, both interpretations differ in the details of rates of subsidence and salt-movement. In the 
case presented by Figure 11-b salt movement and the rates of filling the rim-synclines are partly 
out of balance. The following salt glaciers are formed or the diapir is covered by sediments of 
the expanding rim-synclines without stopping diapiric growth. The resulting growth pattern of 
the structure is also called Christmas-tree diapir. The example in Figure 11-c presents a more 
continuous growth history without periods breaking the overall long-lasting trend of diapiric 
growth. These examples both show two end-members of diapiric growth which are potentially 
imaginable in the structural setting of this region. However, comparison with similar structures 
in the region (important tool for proof of consistency) makes the interpretation in Figure 11-c 
more likely. Without additional information about the regional context, both interpretations 
represent "valid" solutions based on the given information. Thus, besides the interpretative 
uncertainty due to the insufficient resolution of the seismic, there is also a conceptual 
uncertainty. Nevertheless, if the geodynamic development history of the region is known, it can 
be used to further constrain the interpretation. 

The low resolution of the seismic signal around salt structures is mainly due to problems and 
pitfalls associated with their imaging such as complex raypaths, seismic velocity anisotropy, P- 
and S-wave mode conversions, and reflected refractions. Jones & Davison (2014) give a 
comprehensive summary of numerous issues effecting the seismic imaging in and around salt 
bodies, and show different processing methods, such as Reverse Time Migration, which could 
improve the image quality. However, geological services often need to work with legacy data 
and so often do not have the option to use these techniques. 
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Figure 11: Seismic representation of a salt structure and possible interpretations of the salt struc-
ture (blue) and the surrounding sediments (yellow dashed lines) (b, c). d shows a comparison of 
the outer shapes of the structures in b and c. See Figure 10 for an overview of the seismic section. 

Example 2: Crestal structures of diapirs 

In Figure 12 the extract of the seismic section from Figure 10 shows the top part of a salt wall. 
In general, the crestal structure of a diapir is often very heavily deformed by forces 
accompanying the growth of the structure or act during salt withdrawal, as well as influenced 
by effects of subrosion. The segmentation into several small and often deeply dipping faulted 
blocks (e.g. Yin et al., 2009) decreases seismic imaging and complicates the differentiation in 
main salt body, cap rock and adjacent sediments. Presumably, the interpreters oversimplify the 
salt cap structures, especially if the cap rock material is thin or shows similar seismic 
characteristics like sediments of the flank. Well explored structures onshore give an impression 
of the partly given complexity in the top of salt structures (e.g. Best & Zirngast, 2002). Figure 12-
b and Figure 12-c show two possible interpretations of the salt structure example (in time 
domain). Due to the only moderate image quality of the 2D seismic line, some properties of the 
salt structure cannot be interpreted with sufficient certainty. Question marks about the 
interpretation persist with regard to 

 
Figure 12: Seismic image of a salt wall top in the German North Sea, illustrating the difficulties 
in differentiating between salt body, cap rock and adjacent sediments. See Figure 10 for a full 
view of the seismic section. 

• the structure of the sediment-salt contact (antithetic faults or rollover on the main fault; 
imaged in an overview scale in Figure 10) (black dot) 

• the extent/thickness of the possible caprock (red dot) 
• the age of the sediments covering the salt structure (green dot). 
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An incorrect interpretation of the top of the salt body leads to an incorrect representation of 
the geometry and thus of the geodynamic development history of the diapir. Due to former salt 
dissolution an anhydrite residue may have developed at the top/crest of a salt structure forming 
a thick anhydrite cap rock (up to several hundreds of meters). As a consequence, the “true” salt 
body geometry may be interpreted incorrectly (Figure 12). Additionally, the thickness of the cap 
rock has a significant influence on the depth representation of the salt body (or the change of 
shape/geometry of the salt body and underlying basement during the time-depth 
transformation) due to the physical properties of the evaporites and the resulting differences of 
the velocities between cap rock and the actual salt body (Table 1). The additional analysis of 
seismic velocities (if available in legacy datasets) could, however, provide the interpreter with 
valuable clues to limit its fuzziness in the interpretation (major differences in seismic velocities 
between rock salt, anhydrite and siliciclastics). 

Example 3: Impact of a salt structure on the velocity field 

Additionally, when a salt model is being built (e.g. for depth imaging), it is often assumed that 
the evaporite body is pure halite with a constant compressional wave speed of 4500 m s-1. But 
almost all salt bodies contain additional evaporite minerals with significantly higher velocities 
than halite, such as gypsum or anhydrite and/or minerals with significantly lower seismic 
velocity, such as the K-Mg-rich mineral Carnallite, resulting in a distinct velocity anisotropy 
across the salt structure. As shown in Table 1, seismic velocities can vary significantly between 
typical evaporite minerals. However, larger deviations from the median of seismic velocities of 
4500 m/s within the Zechstein salt bodies do not usually occur in the southern North Sea. This 
occurs only if instead of the thick main salt of the Staßfurt Formation younger Zechstein 
formations or even units of the salt-bearing Upper Rotliegend were included in the diapir 
formation or the rock salt from the Staßfurt formation were dissolved or eroded in earlier stages 
of salt structure evolution. 

Table 1: Density and seismic velocity of typical evaporite minerals. 

Mineral Density (kg m-3) seismic velocity (m s-1) 

Halite 2200 4500 

Gypsum 2300 5700 

Anhydrite 2900 6500 

Carnallite 1600 3900 

Often seismic interpretation is performed in the time-domain, so the geometries of structures 
do not correspond to their real shape because of lateral distortions by lateral and vertical 
changes in seismic velocities. This can lead to significant differences in thickness of units with 
the depth or differences between real dip and apparent dip of structures in time domain (Figure 
13). Experienced interpreters can handle such negative impacts on their interpretation but are 
not immune to misjudgement. A depth conversion without additional well control or additional 
velocity information could also ultimately lead to false assumptions. This issue is generally 
addressed during depth conversion of seismic data, where time units are converted to depth 
units. Another example of this salt body/cap rock/adjacent sediments differentiation problem 
for the Norwegian North Sea region is well illustrated in Jones and Davison (2014). 
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Figure 13: Seismic section across a salt wall and adjacent rim-synclines in the German North Sea, 
illustrating the difficulties in interpreting seismic sections in time and differentiating between (a) 
real thickness changes within an adjacent rim-syncline or the impact of increase of overall seismic 
velocities with depth; (b) a real horst structure limited by faults or a velocity pull-up structure be-
neath a salt structure; (c) real over-steepened structures or the influence of strong lateral chan-
ges in the velocity field; (d) effect of an unfavourable direction of the profile not being perpendi-
cular to the strike of the salt flank or the real complexity of the flank. This can have a considerable 
effect on the quality of the seismic image. See Figure 10 for a full view of the seismic section. 

Example 4: Effect of the velocity field on subsalt interpretation 

Erroneous interpretations of a salt structure geometry and wrong assumptions for the lateral 
velocity changes above the basement may have considerable consequences for the 
interpretation of the sub-salt strata and structural elements. The influence/effect of the seismic 
velocity on the geometry of structures and strata is especially significant for structural 
interpretation below salt structures. Further, due to the strong reflections and refractions at the 
sediment-salt contacts, little seismic energy reaches the deep lying structures below the salt. 
This often leads to a generally lower resolution at greater depth (especially below salt 
structures). Thus, the geometry of sub-salt structures or basement faults is often not fully 
recognizable in seismic data and thus highly dependent on interpretation. Figure 14 illustrates 
this by showing three interpretations of the base salt. Independent of the different 
interpretations shown in Figure 14, the overview profile in Figure 10 shows a large offset in the 
depth trend of the base Zechstein in the area of the described salt structure. This is a strong 
indication of the presence of a large offset fault/fault-zone in the basement below the salt 
structure. This is also a good example of the fact that one should always create the structural 
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interpretation in the overall context of neighbouring structures in order to exclude wrong 
interpretations from the outset. 

 
Figure 14: Example of different interpretations of the basement below a salt structure (see Figure 
10 and Figure 13 for a full view of the entire structure). (a) seismic image; (b) the horst below the 
salt structure could be due to a complex wrench structure (transpressional/transtensional) which 
was reactivated several times under different stress fields; (c) The basement bulge could have its 
origin in a velocity pull-up effect below the salt structure while only a minor offset fault structure 
exists below the diapir (the image in case c shows an overlay of two different stretches of the 
same image to outline the possible velocity pull-up effect); (d) the interpretation assumes 
additionally to major extensional faulting with only minor strike-slip component that salt from 
the Upper Rotliegend flows towards the highest point of the structure, increasing the differences 
in the structural gradients along the base Zechstein. 

Example 5: Another example of interpretation of subsalt structures 

As mentioned above, the seismic resolution is generally decreased at greater depth, especially 
below salt structures. As a consequence, interpretation of deep, sub-salt structures is therefore 
often subject to uncertainty. Figure 15 a-d shows four different interpretations of a basement 
fault below a minor salt structure (see Figure 10 for location). Each interpretation differs in fault 
geometry and/or fault kinematics and therefore the geodynamic history necessary for its 
development. Ideally, any interpretation should be in line with all available information 
regarding both the regional geodynamic development (i.e. fault kinematics) and resulting fault 
mechanical constraints, e.g. honour typical fault dip angles. 

Example 6: Absence of additional information, e.g. wells 

Uncertainty in seismic interpretation may not be due to decreased seismic resolution alone, but 
also to the absence of external stratigraphic constraints e.g. well constraints. Figure 16 shows 
an example were salt dynamic evolution and subsequent erosion resulted in isolated 
occurrences of sedimentary units again in the vicinity of salt structures. No well constraint exists 
and because seismic reflectors are restricted to those comparatively small areas, they cannot be 
correlated with surrounding reflectors / similar reflectors nearby. In this case the stratigraphic 
affiliation of the reflectors is uncertain. In the area of the southern German North Sea, this 
situation can be observed in several locations, especially effecting the interpretation of the 
Upper Middle Keuper and the transition of the Upper Keuper to the Lower Jurassic. Due to the 
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different, partly asymmetrical development of individual rim synclines and the resulting lack of 
connectivity, it is not possible to correlate the seismic reflectors from one area to another (or to 
areas which are constrained by wells). A stratigraphic interpretation and, in this case, the reliable 
identification of Jurassic sediments in these areas is not possible without major uncertainty. 

 
Figure 15: Due to generally lower resolution at greater depth, the geometry of sub-salt or 
basement faults is often not fully recognizable in seismic data. Without any further constraints 
(e.g. regional/sub-regional geodynamic and tectono-stratigraphic information/assumptions, 
comparison with neighbouring structures with a similar strike-direction), any of the four options 
of Figures a-d may be correct. In this specific case from the south eastern North Sea the (a) case 
of a transpressional fault zone and (d) a reverse fault are more unlikely. 
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Figure 16: A rim syncline and adjacent turtle structure in the southern German North Sea. (left) 
overview view; (right) detail view of uncertain interpretation of sediments of the rim syncline.  In 
the rim syncline and along the flanks of the turtle structure discontinued seismic reflectors can 
be observed, which are difficult to assign due to the lack of borehole constraints or ability to 
undertake a regional correlation with comparable reflectors. 

 

2.3.4 Defining a velocity model with uncertainty, using check-shots at wells 

The velocity model that is used for time to depth conversion of the structural model has a 
substantial impact on the depth of the horizons and structures in the final model and so it is 
important to find a way to assess the uncertainty in this model. One example of the generation 
of such a velocity model and assessment is the velocity model generated by TNO - Geological 
Survey of the Netherlands for depth conversion of deep subsurface models in the Netherlands. 
The layer cake velocity model was developed based on well velocity data (VELMOD-3). More 
material can be found at the corresponding Website: https://www.nlog.nl/en/seismic-
velocities).  

The used velocity dataset consists of sonic logs and checkshot data. Sonic data from different 
logging tools are available, often expressed in different formats like slowness, instantaneous 
sonic velocity and (calibrated) traveltime-depth (TZ) pairs. All raw velocity data were subject to 
quality control in terms of (velocity) data type and accompanying data unit. The dataset was 
checked per well for completeness. Wells without stratigraphic information were discarded. 
Wells without deviation data were considered to be vertical. The aggregated stratigraphic data 
have been quality checked on completeness and updated when necessary. 

In VELMOD-3, an update of earlier versions, considerable effort was made to generate a (semi) 
automated workflow for processing the velocity, stratigraphic and directional well data. This 
made it possible to process the 3475 individual velocity data sources from a total of 1642 wells. 
Well plots of each data set allow the inspection of the data and detection of errors. The selection 
of a preferred dataset (if multiple datasets were available) per stratigraphic interval was based 
on a best statistical fit within the complete regional dataset.  
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The resulting preferred well data set is further used in model building of the layer cake velocity 
model. This velocity model assumes that the sedimentary layers, except for the Zechstein group, 
were subject to compaction due to sediment loading. Compaction results in an increase of 
compressional wave velocity and so the seismic velocity is assumed to increase linearly with 
depth: 

V(x,y,z) = V0(x,y) + K · z 

Where:  

- V(x,y,z) = velocity of the layer at depth z  

- V0(x,y) = velocity at ordnance level  

- K = factor determining the linear increase of velocity with depth      

The Late Paleozoic Zechstein layer consists predominantly of high velocity carbonate and halite 
for which no clear relationship between seismic velocity and depth exists. The model parameter 
K is determined from the linear least squares relationship between the interval velocity (Vint) and 
mid-depth (Zmid) of the layer. It is assumed that this parameter is independent of location. 

 
Figure 17: Example of a plot of interval velocity versus mid-depth to estimate k (from 
Pluymaekers et al., 2017). 
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The relationship between travel time in a layer and the thickness and depth of a layer for a linear 
increase of velocity is given by (compare with Japsen, 1993): 

∆𝑡𝑡 = �
1

𝑉𝑉0 + 𝑘𝑘 ∗ 𝑧𝑧
𝑑𝑑𝑧𝑧 =

1
𝑘𝑘
∗ ln(𝑉𝑉0 + 𝑘𝑘 ∗ 𝑧𝑧𝑏𝑏) −

1
𝑘𝑘
∗ ln (𝑉𝑉0 + 𝑘𝑘 ∗ 𝑧𝑧𝑡𝑡)

𝑧𝑧𝑏𝑏

𝑧𝑧𝑡𝑡
 

This can be either rearranged to calculate the bottom depth of a unit (zb) when the depth at the 
top (zt), the travel time and k is known: 

𝑧𝑧𝑏𝑏 =
𝑉𝑉0
𝑘𝑘
∗ (𝑒𝑒∆𝑡𝑡∗𝑘𝑘 − 1) + 𝑧𝑧𝑡𝑡 ∗ 𝑒𝑒∆𝑡𝑡∗𝑘𝑘 

Or it can be rearranged to determine the location dependent parameter V0(x,y) at borehole 
locations: 

𝑉𝑉0 =
𝑘𝑘 ∗ (𝑧𝑧𝑏𝑏 − 𝑧𝑧𝑡𝑡 ∗ 𝑒𝑒∆𝑡𝑡∗𝑘𝑘)

𝑒𝑒∆𝑡𝑡∗𝑘𝑘 − 1
 

This relationship implies that the model travel time between top (zt) and base (zb) of the layer 
equals the travel time Δt according to the sonic data.  

The primary goal of VELMOD-3 is the construction of a regional velocity model for the use of 
time-depth conversion of regional seismic interpreted horizons. Consequently, interpolation of 
the well velocity data is needed to depth convert time grids. Simple kriging was applied in the 
gridding of the Vint and V0 data points (Petrel Software). The grid cell size is 1000m x 1000m. A 
spherical variogram model was used with a relative nugget of 10% of the total variance. 
Variogram ranges were obtained through exploratory data analysis (Isatis statistic software).  

Velocities for depth conversion of the Zechstein layer are based on interval velocities and a 
correlation between Vint and Δt–data in the wells. A provisional grid of interval velocities is built 
based on the travel times from seismic interpretation and the well-Vint Δt relation. Calculated 
differences between Vintprov and Vintborehole were kriged to obtain interpolated corrections of 
ΔVintprov. The final Vint-grid was obtained by subtracting the kriged differences from the Vintprov-
values. 

When using Monte Carlo simulation to assess the uncertainty the velocity could be varied to 
generate the different realizations. Multiple V0 maps can be generated by using Sequential 
Gaussian Simulation.  

2.4 Uncertainty from acquisition to interpretation of the gravity data 
In order to discuss the uncertainty that is involved in the use of gravimetric data and 
gravimetrical modelling in combination with petrophysical and geological data, and with the 
constraints of other geophysical information, it helps to look at a general workflow as shown in 
Figure 18, where the yellow boxes represent data (in the different levels of processing) and the 
blue ones the processes which are able to generate uncertainty. It is worth mentioning that this 
workflow is designed with a view to its application in areas where subsurface exploration data 
(e. g. seismic and wells) are scarce, but of course, when available, they would also be taken into 
account in the uncertainty analysis (see also deliverable 6.4 of the GeoERA project 3DGEO-EU, 
Pueyo et al, 2021). Therefore, three main pillars for the modelling of gravimetric data with their 
own sources of uncertainty are considered (level 1); gravimetric, geological and petrophysical 
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data that will propagate in further steps. Beyond that level, interactions (modelling) among all 
sources of information may happen in 2D and 2.5D (level 2) as well as in 3D (level 3) 
independently or in combination and thus, uncertainty of the structural models can be evaluated 
in 2D and 3D. 

In level 1 (top of Figure 18), firstly the petrophysical properties of the different lithologies or 
geological units and their distribution are estimated from field (and laboratory) records, from 
well logs or harvested from databases. Secondly, structural, stratigraphic and cartographic 
features are acquired in the field and/or from data repositories. Thirdly and lastly in level 1, 
gravimetric data are measured in the field and processed and/or harvested from data bases. A 
first quality check and uncertainty assessment must be done already for this level, as the 
processing of the gravimetric data contains different types of uncertainties. Some of them are 
related to the acquisition of the data itself (imprecision in the measurement process, positioning 
of the stations), and others to the procedures for reducing the measured gravity data to obtain 
the observed gravity anomaly. 

In level 2 the gravimetric data are processed to obtain the Bouguer anomaly that for upper 
crustal studies is separated in its regional and residual components. As an aid to interpretation, 
other techniques are used such as the Euler deconvolution, vertical and horizontal derivatives, 
etc. The usual way to interpret the data is obtaining a regular grid that is represented in a map. 
Further, cross sections are generated from the structural and stratigraphic information. 
Whenever possible, the cross sections are balanced, honouring basic geometric rules (see 
overviews by Groshong, 2006, Allmendinger, 2015 and López-Mir, 2019). Software packages 
allow density functions to be used that are deduced from petrophysical data, while other 
software packages only allow constant densities to be assigned. In any case, we always make 
sure that the cross sections for which the calculated gravity anomaly matches the observations, 
are consistent with each other. In this way, the seriated cross sections represent a plausible 
image of the subsurface. 

Sequentially or alternatively (the 2D step may be skipped in areas with extensive or at least 
sufficient subsurface information), in level 3 an integrated 3D structural model is built merging 
all data together - the petrophysical and geological data (formation and structural trends, bed 
dips, stratigraphic thicknesses, etc.) together with the measured gravimetric field. The 
integration of the geological data to obtain the initial 3D geological model can be performed in 
several software platforms such as Skua-Gocad created by Emerson-Paradigm, Move by 
Petroleum Experts (former Midland Valley Ltd.) or Petrel by Schlumberger. The resulting 2D, 
2.5D or 3D models will have geological (depth geometry, contacts, faults, etc.) and petrophysical 
attributes with their associated uncertainties derived from level 1. 

Further processing during the generation of 3D models with attributes includes the explicit and 
implicit modelling and parametrization of the geometry (e.g. Skua-Gocad by Paradigm, Petrel by 
Schlumberger) and the forward modelling and inversion of potential field data; for example in 
GeoModeller (by Intrepid Geophysics), in IGMAS+ (by Schmidt et al., 2010) or in GM-SYS 3D (a 
module of Oasis Montaj from Seequent). Within the 3DGEO-EU project, 3D Geomodeller is 
mainly used by IGME (Instituto Geológico y Minero de España) to perform stochastic inversion 
and to allow for inverting the geometry, the density or both, and further GMSYS 3D is used 
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where the inversion is performed in the Fourier domain in order to invert the density or the 
geometry of a given layer. 

 
Figure 18: Generalized workflow for the use of gravimetric measurements and gravity modelling 
in order to improve the geological model. 
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The first step is to build up the geological model and add the physical properties, density in this 
case. Then we calculate its gravimetric response and compare it with the observed gravity 
anomaly. We modify the model, either “manually” (forward model) or “automatically” 
(inversion) until the pattern of the calculated anomaly fits the observed anomaly reasonably 
well. In order to analyze the uncertainty involved in the whole process, it is necessary to consider 
all three main sources of data and their related uncertainties: gravimetric, geological and 
petrophysical data as well as those sources which originated during the different levels of 
processing. Then, while integrating all together during the modelling process (2D, 2.5D and 3D, 
either forward or inversion), additional sources of uncertainty must be considered as well as the 
propagation of uncertainties derived from the lower levels to the final 3D geological model. 

2.4.1 Uncertainty related to gravimetric data 

The interpretation of gravimetric data itself contains uncertainties at different levels. Some of 
them are related to the acquisition of the data itself (imprecision in the measurement process, 
positioning of the stations), and others related to the procedures for processing the measured 
gravity data to obtain the observed gravity anomalies that are not always calculated using the 
same standard or take into account the same parameters (Seigel, 1995; Hinze et al., 2005). The 
semi-quantitative interpretation of the gravity data (Euler solutions, derivatives, etc.) and the 
gravity modelling (either forward or inversion) also contain uncertainties that are difficult to 
assess.  

Besides, different levels of accuracy are required for surveys with different objectives (i.e. 
regional studies versus microgravimetric prospecting). The level of precision required will 
determine the field procedure and the level of accuracy of the corrections that are pertinent. 
Focusing on a given survey, instrumental errors and the data reduction procedures will require 
post-processing to estimate the associated uncertainties that propagate and accumulate into 
the final data. For example, Cattin et al. (2015) have developed a MATLAB software that allows 
the gravity data to be processed and the uncertainties to be obtained at the same time. At IGME, 
for example, the uncertainty is usually estimated by repeating a 10% of the survey and 
calculating the standard deviation of the differences between pairs of repeated measurements. 
However, before undertaking any joint interpretation, we have to bear in mind that the 
uncertainty level of the raw gravimetric data is significantly lower than other raw data sources 
(geological or petrophysical data). 

2.4.2 Uncertainty related to geological data 

Geological cross sections are keystones in 3D modelling, especially if they are balanced and 
restored. They represent the integration of several geological and geophysical data. With 
respect to geological data (see sections 2.1 and 2.2 for further details on borehole and seismic 
data and 2.4 for the uncertainty of field measurements), uncertainty mainly comes from the 
acquisition and analysis of the raw data needed for cross-section construction (implying natural, 
human, sampling quality and instrumental uncertainties; Bardossy and Fodor, 2011) and from 
the interpretation done when data are incomplete or scarce and are extrapolated at depth 
(implying conceptual uncertainties). The instrumental sensitivity conditions data accuracy of 
bedding attitudes, fault geometry and/or bed thicknesses. The choice of inappropriate outcrops 
and the natural variability of beds and faults due to, for example, thickness changes, 
stratigraphic tilted beds and geometrical variations of structures, constitute human and natural 
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uncertainties. To reduce them, a dense and representative sampling of structural data is 
fundamental to establish and individualize dip domains and properly apply existing fold and fault 
geometrical models (Groshong, 2006; Fernández et al., 2003). An uncertain structural model 
could be constructed that reflects these ambiguities (see Section 3 of this report). 

Nevertheless, the exposure of geological elements is normally incomplete (Jones et al., 2004; 
Keffer, 2007; Lindsay et al., 2012) and a certain amount of interpretation is needed. For example, 
when dealing with shortening estimates from 2D sections, eroded or unknown subsurface 
cutoffs constitute a major source of uncertainty, as well as the occurrence of inherited 
extensional faults or salt structures later reactivated (Bulnes and McClay, 1999; Judge and 
Allmendinger 2011; Groshong et al., 2012). This likewise occurs when internal deformation 
(Mitra, 1994; Moretti and Callot, 2012; Sans et al., 2003) or when out-of-plane motions in the 
cross section are obviated (Pueyo et al., 2004; Sussman et al., 2012).  

These sources of uncertainty have been partially studied but few of them quantified in previous 
work (see e.g. overviews by Judge and Allmendinger, 2011; Woodward, 2012; Lingrey and Vidal-
Royo, 2015 and the previous section). Beyond these, a more severe source of uncertainty is 
related to the so-called “conceptual uncertainty” (Bond et al., 2007; Bond, 2015). The 
application of incorrect geological models when building cross sections (or 3D models) in areas 
with scarce and heterogeneous datasets can turn into totally erroneous interpretations. 
However, when these “wrong” models or sections are used to compute the potential field it is 
likely that the match to the measured potential field is worse than if the sections (or 3D model) 
are correct. 

2.4.3 Uncertainty related to petrophysical data 

Petrophysical data (in particular rock density, magnetic susceptibility and remanence), as one of 
the three keystones for the 3D modelling based on potential-field geophysical data, is a 
significant source of uncertainty due to the large natural variability of these properties in rock 
volumes (Henkel, 1994; Tenzer & Gladkikh, 2014; Schön, 2015; Enkin et al., 2020; among many 
others). Uncertainty analysis on density (and other petrophysical variables) from borehole 
logging data has been performed by the oil industry (Moore et al., 2011; Reichel et al., 2012); 
instrumental (measurements and calibration) and processing (correction and conversion 
processes) sources of error have been identified. However, much work still needs to be 
undertaken in relation to the estimation of accurate uncertainties derived from the natural 
variability, among other factors (Adams, 2005; Gaillot et al., 2019). Using outcrop samples, 
uncertainty related to the estimation method (usually the Archimedes principle) is usually small. 
Natural variability at outcrop and formation scales is very seldom determined, although both 
density and magnetic susceptibility and magnetic remanence vary very frequently in an order of 
magnitude of two or more on this scale. Uncertainty is estimated statistically using the standard 
deviation of the samples for each lithology. This variable has been used to narrow down the 
density assignation of density values during modelling (Köhler and Eichner, 1973). 

In gravimetric modelling (from regional studies to micro-scales) petrophysical uncertainty is 
commonly obviated in many workflows, sometimes the raw data are poorly described in 
technical reports or scientific papers, and very often they are usually scattered, scarce and many 
times opaque. Sometimes, data from the literature (e.g. Schön, 2015) are assigned to rock 
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(lithological) formations for the 2D and 3D modelling of the observed gravimetric signal. When 
seismic velocities are available, densities may be obtained from them.  

As adjusting the observed anomalies can be performed either by modifying the geometry, by 
modifying the petrophysical data for a given rock formation or by modifying both 
simultaneously, this ambiguity becomes an additional source of uncertainty. To reduce this 
ambiguity, the petrophysical information must be considered as primary and key data in 2D and 
3D potential field modelling. Numerous samples for characterizing the natural density variability 
of the target formations have to be acquired directly from outcrops (and then processed in the 
laboratory) or harvested from databases (rock samples or well logging; e.g. Enkin, 2018; Pueyo 
et al., 2016). Further, density to depth relationships (from formation density logs) have to be 
considered during modelling. The final goal is to build robust histograms (i.e., characterizing the 
probability density function) for every modelled volume to constraint the mean density and its 
variability (both at surface and at depth) in order to be able to estimate a much more realistic 
uncertainty.  

All in all, and to the best of our knowledge, the uncertainty related to the natural variability of 
petrophysical data (rock density, magnetic susceptibility and remanence) assigned to rock 
volumes has been very little evaluated. More has to be done concerning the quantification of 
the uncertainty derived from the petrophysical data. In our opinion, only the statistically robust 
characterization of the rock density of a target formation at the surface (and in addition at 
different depths if possible) is the only way to estimate the real impact of its natural variability 
on the derived uncertainty in the final 3D model. 

2.4.4 Uncertainty related to gravity modelling (forward and inversion) 

In addition to the inherent uncertainties that the three main sources of the input data add to 
the gravimetric modelling (observed gravity anomalies, geological and petrophysical data), other 
sources of uncertainty derived during the modelling process (2D, 2.5D and 3D) and for the 
interpretation of the final results have to be taken into account. 

The method of construction of the initial geological model (2D, 2.5D or 3D) will generate its own 
uncertainty. This uncertainty will depend mainly on the scale of the study area, the size of the 
model, the accuracy of the geological input data and the algorithms used to build up the model. 
We have to bear in mind that the model represents a simplification of the actual geology to 
create a manageable model and this simplification is an important source of uncertainties. 

Another source of uncertainties is due to the non-uniqueness of the gravimetric method (Skeels, 
1947). The calculated anomaly from very different models can fit the same observed gravity 
anomaly, and therefore we have to find the model that is consistent with all the available 
geological and geophysical observations. Further, each software uses a different algorithm to 
calculate forward modelling and inversion (e.g. Parker, 1973, Tarantola, 1987a) which leads to 
different ways to assess uncertainties. 

There are two main methods to estimate uncertainty in gravity modelling: through sensitivity 
tests (e. g. Ayala et al., 2003) or probabilistic approaches (e. g. Guillen et al., 2008). In the 
sensitivity tests, a parameter (geological boundary, density) is changed until the calculated 
anomaly does not fit the observations. In the probabilistic method, the parameters of the final 
model are given with a probability which can be regarded as the uncertainty of the parameter. 
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Some software packages allow using density functions that are deduced from the petrophysical 
data (e. g. GeoModeller or GM-SYS 3D), while other software only permits a constant density to 
be assigned to each lithology (e. g. GM-SYS or Gravmag). In that case we sometimes allow lateral 
variations of the density for the same lithology across parallel cross sections taking into account 
the standard deviation of the density assigned to that lithology. We always make sure that the 
cross sections whose calculated gravity anomaly match the observations are consistent with 
each other. In this way, serial (and balanced) cross sections represent a plausible image of the 
subsurface (e.g. Izquierdo-Llavall et al., 2019). 

The forward modelling and inversion of the geometry and/or physical properties of the models 
is calculated using GeoModeller (from Intrepid Geosciences where the stochastic inversion can 
be estimated) or GMSYS 3D (from Seequent where inversion is carried out in the Fourier domain 
varying a lithological horizon or physical property one at a time). We consider that the calculated 
gravity anomaly matches the observed gravity anomaly and therefore the model is finished 
when the mean RMS of the difference between the observed and calculated values is small 
enough and the pattern of the calculated anomaly fits the observed anomaly reasonably well. 
There is not a “magic” RMS number: it varies depending upon the objectives, size of the study 
area and depth of investigation. 

As has become fairly obvious from the previous subsections 2.3.1 to 2.3.4, a quantitative 
assessment of the uncertainty for the overall process is very complicated and there is no 
established general workflow for an assessment. An example of how an uncertainty assessment 
for the acquision and interpretation of gravity data could be done practically within limits is 
given in Deliverable 6.4 on “Optimized reconstructions workflows and best practices in 3D 
modelling” of 3DGEO-EU’s work package 6. 

2.5 Uncertainty of field measurements 
Where outcrops are available, field measurements, such as the strike and dip of planes, play an 
important part and can be used by subsequent modelling workflows. Allmendinger et al. (2017) 
have done an assessment of the precision and accuracy of such measurements with a traditional 
compass (brunton compass) and Apple iPhones S6 and 7 running iOs 10.3 and two Apps, 
Stereonet Mobile, which they have developed themselves and FieldMove Clino from Midland 
valley.  They show that the individual measurements have a limited precision and can easily 
scatter ±2° in strike and dip. Further the mean of a set of 40 measurements with each device on 
the same plane was different for the devices, showing that the accuracy is also between one and 
two degrees. In another experiment they measured planes in the limbs of a fold with the 
analogue compass and with their app. While the individual measurements where slightly 
different (the average mismatch was 3.2° ± 2.7°), the difference was not systematic and so the 
mismatches canceled out and the determined fold axis was nearly identical. Novakova & Pavlis 
(2017) assessed the precision of two Android devices, an Honor 3D smartphone and a Lenovo 
B8080-F tablet which use a different magnetic field sensor and accelerometer. For the B8080-F 
the sensor readings already turned out to be too unstable to give reliable results and so only the 
smartphone has been tested further. However, by subsequently comparing measurements of 
fractures taken with the FieldMove Clino app with analogue measurements with a Freiberg 
compass it is shown that the smartphone measurements exhibit a very wide scattering and 
systematic error. So, in conclusion it seems that the precision and accuracy depends very much 
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on the hardware and that it should be assessed before a new brand or type of smartphone with 
new types of sensors is used for field measurements. Midland valley itself recommends Apple 
devices for its FieldMove Cline app and states that is has observed that the variations in 
measurements on Android devices seem to be much larger, suggesting a lower quality of 
hardware in these devices. 

Another way of determining structural data is the construction of a virtual outcrop and 
subsequent structural analysis of the generated model. Cawood et al. (2017) assess and 
compare the uncertainty by using three different techniques: Light Detection and Ranging 
(LiDAR) and the use of photogrammetric techniques on registered images (Structure from 
Motion, SfM) which have been acquired by an unmanned aerial vehicle (UAV, ASfM) and 
terrestrial with a handheld camera (TSfM). They undertook a structural analysis of the generated 
virtual outcrop and compared this to real data measured using an analogue compass-clinometer 
and a digital compass clinometer (FieldMove from Midland Valley on an iPad Air 3G). As the UAV 
could picture the structure from all sites and from top, the ASfM Method led to a reconstruction 
of 100% of the outcrop while the land bound systems, LiDAR and TSfM only achieved 69% and 
78%. Comparing structural measurements on six control surfaces to the analogue compass 
measurements which were used as control data showed that the LiDAR-derived reconstruction 
best reflect the analogue measurements for the control surfaces with a maximum deviation of 
5 degrees (between the poles). The TSfM method delivered the poorest results which was due 
to the fact that it could not reconstruct some of the control surfaces because of their hidden 
concave nature. The ASfM performed better but still did not achieve the quality of the LiDAR 
measurements. The digital compass clinometer showed dip deviations of 4° and azimuth 
deviations of up to 15°. The digital measurements also showed greater dispersion than the 
traditional measurements. 
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3 UNCERTAINTY AND 3D MODELLING 

3.1 Overview 
There are many textbooks on the computation of uncertain scalar data, such as facies or 
permeability, using geostatistical methods. See, for example, Isaaks & Srivastava (1989), Pyrcs 
& Deutsch (2014) or Remy et al. (2009). What is less commonly published are methods that deal 
with the estimation of the uncertainty of the geological structural model. One simple approach 
is to be aware that the uncertainty increases when moving away from the points where data are 
given. Siler et al. (2016), for example, compute a volume with the relative uncertainty for their 
structural model, ranging from 0 to 1, by first computing the distance to the data (seismic 
sections and boreholes) for each point and then fitting this distance to pre-defined logarithmic 
relative uncertainty curves. Further they assume that uncertainty increases with depth.  

One of the most commonly used methods to estimate the uncertainty in geoscience 3D 
structural models is the use of Monte Carlo simulation which is sketched in Figure 19. For the 
input data, such as borehole markers for horizons or faults, their positional uncertainty is 
assessed, using a spatial probability distribution function. Using these distributions, a set of input 
data is generated using random sampling which is then used to generate a 3D model, using a 3D 
modelling software, such as Skua-Gocad or Petrel. This is done several times and so for each set 
of input data a corresponding geological 3D model, called a realization, is obtained which is 
slightly different to the other ones. Epistemic uncertainty, such as different possible 
interpretations of a seismic section, could be incorporated into the Monte Carlo approach by 
eliciting the probability of each different interpretation from experts, and generating a 
corresponding number of realizations for each interpretation. This would, for example lead to a 
higher uncertainty near faults for which the presence is uncertain, so that epistemic and 
aleatoric uncertainty add up. The different realizations must then be summarized in order to 
describe the geological subsurface as one model with uncertainty and different techniques are 
available by doing this e.g. visually or converting the surface based models to volume (voxel) 
models (see below). Pakyuz-Charrier et al. (2018) give a good overview of how this method could 
be applied to assess the uncertainty in structural models. 

However, the use of this method requires that the necessary number of model realizations can 
be generated with an acceptable effort, ideally in some kind of (semi-) automatic way. One way 
to do this is the use of an implicit modelling approach as, for example, described in Lajaunie et 
al. (1997). Software that implements approaches like this is, for example, the Structure and 
Stratigraphy workflow in Paradigm’s Skua-Gocad software, or the software GeoModeller 
(Calcagno et al., 2008). GeoModeller has, for instance, been used by Pakyuz-Charrier et al. (2018) 
to assess the influence that the uncertainty of the borehole path and the uncertainty of the 
location of stratigraphic interfaces within this borehole path has on the uncertainty of the course 
of stratigraphic interfaces and faults in a 3D Model. They further study the sensitivity of this 
uncertainty dependent on the dip of these interfaces.   
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Figure 19: Sketch of the general idea behind an uncertainty estimation using the Monte Carlo 
technique. 

SkuaGocad further provides a workflow, called structural uncertainty workflow, that creates 
multiple structural models based on the uncertainty provided for the input data. This workflow 
has been used by Schweizer et al (2017) in order to assess the structural uncertainty of a small 
300x300x250 m large 3D model of a shallow geothermal reservoir in the city of Staufen, in the 
southwest of Germany, half way between Freiburg and Basel. They use this workflow for 
different models which are based on different amounts of input data. A basic model, a model 
that has been constructed using additional borehole information, a model that is built using 
additional information of 3D seismic and so on. They then investigate to what extent this 
additional information changes the overall structure of the model and improves the uncertainty 
within it. Wellmann & Regenauer-Lieb (2012) implemented an equivalent workflow in the 
context of GeoModeller to test their workflow using a simple test data set. Further, De la Varga 
et al. (2019) provide an open source Python based framework, called GemPy, which uses the 
technique described in Lajaunie et al. (1997) to generate the different models (realizations) of a 
geological model in an automatic fashion and allows the different models to be summarized into 
one model and thus provide an assessment of the uncertainty in the 3D model.  

One example of a quantitative parameter that describes the uncertainty of a volumetric 
geological model is the information entropy (e.g. Wellmann & Regenauer-Lieb, 2012). Provided 
that different realizations of the structural model have been computed, it is possible to compute 
the geological unit to which each point or cell of a regular grid in each realization belongs. 
Subsequently the probability that a point belongs to a certain unit can be determined (for each 
unit). In order to express the uncertainty of a certain point or cell in a 3D geological model, the 
information entropy is then expressed as (e.g. Wellmann & Regenauer-Lieb, 2012): 

𝐻𝐻(𝑥𝑥, 𝑡𝑡) = −�𝑝𝑝𝑖𝑖(𝑥𝑥, 𝑡𝑡) ∗ log (𝑝𝑝𝑖𝑖(𝑥𝑥, 𝑡𝑡))
𝑁𝑁

𝑖𝑖
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Where 𝑥𝑥 denotes the location, 𝑡𝑡 could be time for a time dependent model and 𝑁𝑁 is the number 
of different lithologies, or stratigrafic units that could occur at the given location. The 
information entropy will be between zero, when the point or cell with certainty belongs to a 
certain geological unit, and one, when it is very uncertain and it belongs to each unit with equal 
probability. The information entropy could then be visualized, together with the most probable 
unit in order to show where the model is highly certain and where not. 

 

3.2 Estimating uncertainty for a regional 3D model in the Netherlands 
One example of an uncertainty estimation using the Monte Carlo technique is the uncertainty 
assessment for the 3D model of the deep subsurface of the Netherlands, called DGM-deep 
(Kombrink et. al., 2012). The geological maps and more information can be found at 
https://www.nlog.nl/en/geological-maps and https://www.dinoloket.nl/en/digital-geological-
model-dgm-deep. In order to assess the usability and reliability of this model a stochastic 
uncertainty workflow was developed as part of the modelling workflow.  

DGM-deep is based on interpretations of publicly available 2D and 3D seismic survey data, 
combined with a variety of well data. The modelling workflow consists of building time maps for 
each horizon from the seismic interpretations, which are subsequently converted to the depth 
domain using an acoustic velocity model (VELMOD-3). After time-depth conversion a well-tie is 
applied such that the grid model in the depth domain acknowledges the well data. In a final step 
uncertainty of the model is addressed by calculating standard deviation grids resulting from 
stochastic simulations.  

Stochastic modelling, in which multiple realizations for each horizon are generated, produces a 
Standard Deviation that gives information on the probability of the model (Figure 20). In the 
uncertainty workflow applied, accuracy and precision are combined. This is achieved by using 
the residual grids in the well-tie process, such that standard deviations between the well 
locations are centred around the well-tied depths surfaces (right part of Figure 20). This process 
does not, however, address the source of misties at the well location. 

 
Figure 20: Left: Accuracy is the proximity of measurement results to the true value; precision, the 
repeatability, or reproducibility of the measurement. Right: Combined accuracy-precision 
workflow applied to DGM-deep (from 
https://www.dinoloket.nl/sites/default/files/file/dinoloket_toelichtingmodellen_dgm_deep_v4
_notitie_uncertainty_20150327.pdf). 

https://www.nlog.nl/en/geological-maps
https://www.dinoloket.nl/en/digital-geological-model-dgm-deep
https://www.dinoloket.nl/en/digital-geological-model-dgm-deep
https://www.dinoloket.nl/sites/default/files/file/dinoloket_toelichtingmodellen_dgm_deep_v4_notitie_uncertainty_20150327.pdf
https://www.dinoloket.nl/sites/default/files/file/dinoloket_toelichtingmodellen_dgm_deep_v4_notitie_uncertainty_20150327.pdf
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This stochastic uncertainty workflow follows the deterministic DGM-deep workflow in building 
time maps for each horizon from seismic interpretations that are subsequently converted to the 
depth domain, but also takes into account the potential error bandwidth for each data source. 
A stochastic simulation algorithm (Sequential Gaussian Simulation, SGS) is applied in order to 
generate multiple random realizations for each horizon, both in time and depth domain. Each 
horizon is than represented by its depth and the corresponding standard deviation (see Figure 
21 for an example). 

The workflow takes into account the following three error sources: 

• Data error: This error takes into account any error related to the picking of a horizon within 
a seismic dataset and includes processing errors, vertical shifting errors and resolution 
errors. The data error increases with depth due to the decreasing quality of the seismic data. 
Also a larger error is assumed for picks traced from 2D seismic than those from 3D seismic. 
The data error is added as a noise factor to the original horizon picks using a short correlation 
distance (<1 km). Each realization is conditioned to the available data but varies within the 
error bandwidth away from the points.  

• Structural complexity: This error is associated with the interpolation of the time maps. Areas 
characterized by low structural complexity and gentle features (e.g. platforms and highs) 
will produce small errors with interpolation, while in structurally complex areas (e.g. large 
fault offsets, salt doming) a significant error is introduced when large gaps exist between 
data points. The potential error that may be introduced with interpolation is determined by 
calculating moving standard deviation maps for the depth of each layer using a search 
window of 5×5 km. These maps represent the regional variation of potential interpolation 
error magnitude, which defines the bandwidth within which the SGS interpolation algorithm 
simulates the horizon depths. At the location of data points, the depth values will range 
within the data error bandwidth. Moving away from data points, the error gradually 
increases up to the maximum interpolation error set by the regionally varying structural 
error.  

• Velocity model error: For each map of V0, a set of SGS realizations has been calculated using 
interpolation and variogram settings based on the VELMOD-3.1 model well-velocity data 
set. 

Finally, the errors are combined to a joint depth error following these steps: 

1. A random depth-dependent data error is added to all seismic horizon picks.  
2. A random realization of a set of time domain maps for each horizon is obtained from the 

SGS interpolation of the seismic horizon picks (plus error) in combination with regional 
structural error maps.  

3. A random realization of V0 maps for each horizon is obtained from SGS interpolation of all 
available well velocity determinations.  

4. A random realization of a set of depth domain maps is obtained from time-depth conversion 
of the realized time maps using the realized V0 maps. 

Kriging interpolation of residual well marker mismatches and the subsequent correction for 
these residuals ensures that the maps are conditioned to the wells used. 
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Figure 21: Exemplary side-by-side view for the elevation and its standard deviation (base of the 
North Sea Supergroup) within the Dutch DGMDeep model. 

 
Figure 22: Overview of the workflow for uncertainty assessment of the regional geological model 
(DGMdeep) in the Netherlands, pictured as an event-driven process chain. 
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These steps are repeated until a set of 500 random realizations of time, velocity and well-tied 
depth maps are obtained. From this set of maps the final standard deviations are determined, 
representing the uncertainty of each mapping component (the likelihood that the real depth 
value lies between the estimated value plus or minus 1 times the standard deviation is 
approximately 64%, for a range of 2 times the standard deviation the likelihood is approximately 
95%). Figure 22 shows the workflow as an event-driven process chain. 

3.3 Uncertainty for a voxel based model with high data density 
TNO - Geological Survey of the Netherlands builds and maintains several nation-wide geological 
models. While the deep model (see previous section) is represented by the geological interfaces 
(horizons), the shallow model, called GeoTOP, is represented as a voxel-based model, that 
schematizes the subsurface in 100 x 100 x 0.5 m voxels of up to a depth of 50 m below mean sea 
level. Each voxel is given an estimation of the stratigraphic unit as well as the lithological class. 
The current version of the GeoTOP model covers about 70% of the onshore part of the 
Netherlands, and is based on some 410,000 borehole descriptions that are available in this area. 
Below follows a concise overview of the GeoTOP modelling workflow, focusing on calculation of 
model uncertainty (see Figure 23). For more detailed information, please refer to Stafleu et al. 
(2010) and Stafleu & Dubelaar (2016). 

2.5D Stratigraphic framework model 

Constructing a model with lithological parameters requires more than blind interpolation of that 
parameter. GeoTOP is based on a stratigraphic framework model that is used to constrain 
interpolation of lithological information. GeoTOP uses automatic procedures to interpret the 
stratigraphy of borehole logs. Based on the depth of stratigraphic units in labelled boreholes, a 
stratigraphic framework model is calculated by an independent kriging interpolation of the 
depth of the base of each stratigraphic unit. 

Uncertainty quantification of the depth of a stratigraphic unit is not an easy task, as quite a 
number of sources can be identified that may influence the uncertainty. First there is the 
stratigraphic labelling of borehole information, which is based on geological expertise. The 
construction of a geologically plausible stratigraphic 3D model then requires additional 
information based on expert geological knowledge such as the location of paleo-valleys, general 
geological trends in data-sparse areas, and depositional extent of sediments. With all this 
information imposed on the kriging interpolation, the kriging variance will not be able to provide 
a very useful estimation of the overall uncertainty. Gunnink et al. (2010) suggest a cross-
validation-based approach to assess the uncertainty. The general idea of this approach was to 
leave out each data point – one at a time – and to estimate the variable at that location with the 
remaining data points. The difference between the true and the estimated variable at each 
location is used to quantify a so-called ‘regional’ standard deviation (the uncertainty outside of 
the variogram range of data locations). This regional standard deviation is lowered near data 
locations, by a factor determined by the normalized kriging variance. This method, used in a 
modified form (Dabekaussen & Hummelmann, 2021), benefits from quantifying the overall 
magnitude of uncertainty by cross-validation, while retaining the influence of the variogram to 
determine fine scaled variation in uncertainty at locations in proximity to data points. 
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3D voxel model 

With the boundaries of the 2.5D framework model used to constrain interpolation, the 3D voxel 
model is now populated with estimates of lithological class. These estimates are calculated using 
the stochastic simulation technique Sequential Indicator Simulation (SIS; Goovaerts, 1997), that 
allows the construction of multiple, equally probable, 3D realisations of the model. The 
probability of occurrence of each lithological class within a voxel is then calculated from the 
stochastic model realisations by simply dividing the number of times a particular lithological 
class is assigned to a voxel by the total number of realisations. Note that this procedure produces 
a partial uncertainty of the lithological class, as SIS is performed without taking into account the 
uncertainty of the underlying stratigraphic framework model. 

 
Figure 23: Workflow for the uncertainty estimation of GeoTOP, the shallow geological model of 
the Netherlands. 
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Visualisation of uncertainty 

For a 1D vertical voxel stack, probabilities of lithological class can be displayed in a single bar 
graph, thus showing a probability distribution and hence model uncertainty (see Figure 24). 
Similar displays are possible in visualisations of virtual boreholes (i.e. vertical stacks of voxels). 
However in 2D visualisations, for instance a vertical cross-section through the voxel model, it is 
no longer possible to show all probabilities in a single view: the user will always be presented 
with one of the probabilities at a time. 

 
Figure 24: Visualisation of the geological unit, most probable lithoclass and model uncertainty of 
the lithoclass prediction, shown for a vertical voxel stack. The most probable lithoclass indicated 
in the middle column has been determined by using an averaging method which finds the 
optimum threshold where the ratio between lithoclasses is equal to the ratio in boreholes (see 
Soares, 1992). 

To solve this problem, the concept of information entropy (Wellmann & Regenauer-Lieb, 2012) 
is used as a measure of uncertainty in 3D models (Stafleu et al., 2021). The information entropy 
of a voxel is a single value ranging from 0 to 1 that can easily be calculated from each of the 
probabilities of the lithological classes:  

𝐻𝐻(𝑥𝑥, 𝑡𝑡) = − � 𝑝𝑝𝑚𝑚(𝑥𝑥, 𝑡𝑡) ∗ log 𝑝𝑝𝑚𝑚(𝑥𝑥, 𝑡𝑡)
𝑀𝑀

𝑚𝑚=1

 

where 𝑥𝑥 denotes the location, 𝑡𝑡 the time, and 𝑀𝑀 the number of lithologies. An entropy value of 
0 means that there is no model uncertainty (all model runs result in the same lithological class), 
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whereas a value of 1 occurs when all lithological classes have the same probability. Values in 
between 0 and 1 account for both the number of lithological classes with a probability higher 
than 0 (the more classes, the higher the entropy) and the differences amongst the probabilities 
(the greater the differences, the lower the entropy). 

Figure 25 shows the information entropy of the lithological classes in a fence diagram cut 
through the GeoTOP voxel model. The diagram shows areas that are strongly influenced by 
single boreholes as vertical zones of low entropy. In addition, we can distinguish homogeneous 
stratigraphic units dominated by a single lithological class. In general, entropy increases with 
depth as data density decreases. Similar 3D displays can be made for the information entropy 
or model uncertainty of stratigraphic units. 

 
Figure 25 (A): Model uncertainty (information entropy) of lithological classes in a fence diagram 
through the GeoTOP voxel model, with entropy values ranging from 0 (blue) to 1 (red); (B): 
stratigraphic units of the model; (C) lithological class. 

 

3.4 Estimating uncertainty for a model with low data density in 
geologically complex regions 

In contrast to the previous example from the Netherlands, geological models in the Czech 
Republic are mainly based on scarce and heterogeneous data, as there are often only a few deep 
boreholes available and few geophysical data, such as reflection seismics in particular modelled 
regions. Further the geology in the Czech Republic is mainly built by crystalline units exhibiting 
several ductile deformation phases and magmatic intrusions, which involves a high degree of 
complexity and is less continuous and so mathematically less predictable than sedimentary 
environments. For this reason it would be very hard and unreliable to use automated methods 
of model building based on Geostatistics or to use Monte Carlo techniques. Instead the 3D 
geological models of regions of interest are generated manually, based not only on input data, 
but also on the field experience and relying on a particular model-based interpretation, 
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assuming e.g. a certain tectonic regime or deformation style. The uncertainty within such models 
is, apart from small-scale mineral deposits or reservoir models generated by mining companies, 
neither evaluated nor shown to the users and stakeholders. In order to change this, the Czech 
Geological Survey (CGS) is developing a workflow to assess and visualize the uncertainty in these 
models (Staněk et al, 2019). This method assesses 3 sources of uncertainty (local lithological 
complexity, distance to faults and so-called general uncertainty - a coefficient that increases 
with depth) while the resulting uncertainty decreases in the vicinity of available data (boreholes, 
geophysical profiles and possible other data sources). 

As a first step in the uncertainty estimation, the original 3D geological model that is represented 
by mesh surfaces (horizons and faults) is rasterized and represented as a voxel-based volumetric 
model. This voxelized (and thus slightly simplified) model is than used for the subsequent 
computations and for the uncertainty visualization. Subsequently the three different sources of 
uncertainty are evaluated for each voxel: 

1. Uncertainty due to local lithological complexity 

In order to find a quantitative measure for uncertainty that is due to the structural 
complexity we use a principle published in several studies, e.g. by Brus (2014) for the 2D 
case or by Wellmann & Regenauer-Lieb (2012). As an indicator of the uncertainty of the 
boundaries of rock bodies and the lithological complexity, we chose spatial entropy H(S). 
Brus (2014) states that the founder of the concept of entropy, C. E. Shannon (Shannon and 
Weaver, 1949), defined entropy as follows: for a system with a finite number of possible 
states S ∈ {s1, s2, ... sn} and the probability of their occurrence P(si), the information entropy 
is defined as: 

𝐻𝐻(𝑆𝑆) = −�𝑃𝑃(𝑠𝑠𝑖𝑖)  ∗ 𝑙𝑙𝑙𝑙(𝑃𝑃(𝑠𝑠𝑖𝑖))
𝑛𝑛

𝑖𝑖=1

 

This formula looks quite similar to the one given by Wellmann & Regenauer-Lieb (2012). 
They state that the minimum value is 0, because log 1 = 0 and  𝐥𝐥𝐥𝐥𝐥𝐥

𝒙𝒙→𝟎𝟎
(𝒙𝒙 𝐥𝐥𝐥𝐥𝐥𝐥𝒙𝒙) = 𝟎𝟎 which is 

possible to prove with L'Hopital's theorem (see Ben-Naim, 2008) and that the logarithm can 
be generally taken with any base, depending on the applied unit of information (in our case 
number of rock types). In contrast to them, we always use a natural logarithm in our 
calculation and then normalize results by dividing by ln(n), instead of changing the logarithm 
base. 

Therefore, the information entropy is minimal if all probabilities P(si) are equal to zero, 
except for one, which takes the value 1. It must therefore hold: H(Smin)=0 just when ∃ P(sk)=1 
and P(si)=0 for ∀i ≠ k. It can also be shown that the entropy is maximaI, when the 
probabilities of occurrence of exclusive states are the same (the distribution is uniform): 
H(S)max = ln(n), that is exactly the case when: P(si) = 1/n for all si. When the entropy decreases 
from ln(n) towards 0, the overall information grows, and vice versa. Entropy is the mean 
value of the information content to eliminate uncertainty, which is given by the finite 
number of mutually exclusive phenomena (here the individual rock types).  

The calculated information entropy according to the above equation is a modified so-called 
Shannon index (Jenness et al., 2011 in Brus, 2014), which takes values ranging from 0 to ln 
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(n) where n is the number of unique categories (rock types). The degree of uncertainty in 
the range from 0 to 1 is then obtained by dividing the calculated entropy by ln (n). The degree 
of the so-defined uncertainty then ranges from 0 (a very credible part of the model) to 1 (a 
very vague part of the model). 

The calculation of entropy is executed for each cell in the 3D grid of a geological voxel model, 
using a given point neighbourhood, based on the equation above. The neighbourhood is 
defined as the set of size N, containing all N voxels with their centre in the sphere of given 
radius that has its centre in the middle of the voxel for which the entropy is evaluated. The 
probability pi=ni/N is the ratio of the number of voxels with the rock-type i (ni) to the total 
number (N) of voxels in the evaluated neighbourhood. This algorithm could be modified - 
for example, to increase uncertainty with depth by increasing the radius of the evaluated 
spherical neighbourhood with depth. 

2. Uncertainty due to the presence of faults 

The uncertainty that is due to the presence of faults is assigned based on the distance from 
a voxel to fault planes. In the geological model we differentiate 3 categories of brittle 
tectonic structures based on their size and importance - local minor faults, local major faults 
and regional faults. The fault uncertainty algorithm differs from the rock uncertainty 
calculation. It introduces a manually defined distance (radius of influence) of each category 
of faults and, because of the unknown or uncertain dip the uncertainty of the fault location 
at the highest level (just below the Earth surface) and at the lowest level (bottom of the fault 
or of the model). These values are manually set by the geologist in charge and/or the 
modeller. If mode faults occur in the evaluated voxel neighbourhood, the highest value of 
fault-related uncertainty for the voxel is taken. 

3. Adding of so-called general uncertainty 

Subsequently, the so-called "general uncertainty" (a value of a minimum uncertainty, 
increasing with depth) and the local reduction of uncertainty (increased credibility) in the 
vicinity of documented boreholes and available other data (geological, geophysical sections 
etc.) are calculated, according to the input parameters specified by a geologist in charge. 
The so-called "general uncertainty" expresses the fact numerically that without extensive 
exploration works even the surface geology is often uncertain (inaccurate location of 
lithological boundaries, interpretative location of faults, omission of smaller rock bodies or 
rock bodies with little contrast for classical geological mapping techniques, ambiguous 
interpretation of shallow geophysics, etc.). General uncertainty can be input as polygons 
that allow an expert estimate to be applied in order to differentiate areas with generally 
better and worse data coverage (mainly extent of geological maps of a different quality and 
with a varying degree of detail) in relation to the geological complexity of the area. 

Finally, the three different sources of uncertainty are combined.  In order to merge the values 
of the different types of uncertainties in each voxel of the 3D grid, the conjunction of the 
particular uncertainties in the voxel is calculated as the maximum of the individual uncertainties 
(e.g. Vondrák, 2009). Figure 26 shows a diagram of the workflow. 
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Pilot area for testing the methodology 

As a pilot area for testing the methodology to determine and visualize the data uncertainty, we 
chose a 3D geological model from the western part of the Bohemian Massif, with dimensions of 
about 20x15x1.5 km. This model was selected due to its high variability in geological structure 
and its good coverage by available archived data. The 3D geological model is composed of 
meshes that represent fault planes and boundaries of rock bodies (see Figure 27). The model 
has been first cut into 14 horizontal sections at 100 m vertical intervals using the software MOVE. 
The 2D horizontal sections contain polygons of rock types and fault lines that are topologically 
corrected in ArcMap and subsequently rasterized into 2D grids with a cell size of 50x50 m. So 
that except a variably thick surface layer, each voxel had size of 50x50x100m. 

 
Figure 26: Workflow for uncertainty estimation of geological voxel models as applied by the 
Czech Geological Survey. 
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Subsequent to this rasterization process the different steps to assess the uncertainty are 
executed as described above. As a radius for defining the neighbourhood of each voxel 150 m 
have been chosen, eventually with depth-related increase up to 350m radius at model base. 
Further the influence of the faults has been defined by the geologists to lie in a range of 250 m 
to 550 m. The algorithm can further be modified for example to increase depth uncertainty by 
increasing the radius of the spherical neighbourhood. In the test example, the 3D grid of rock 
types is created from 14 horizontal sections ranging from -900 to +300 m a.s.l. For higher levels 
up to the surface (roughly between 400 and 600 m a.s.l.) the 15th layer is introduced which 
contains the rock bodies and faults from the surface geological map. 

 

 
Figure 27: Surface-based representation of the geological model for which the uncertainty is to 
be assessed. The resulting relative uncertainty of 0.35 is visualized as a light blue isosurface, 
encapsulating regions of uncertainty higher than 0.35. 

The resulting voxel model with uncertainty has been visualized using the software Voxler (see 
Figure 28). It should be noted that the calculated uncertainty values do not have an exact 
quantitative meaning. Due to the heterogeneity of the input data and many necessary expert 
estimates of the input parameters of the calculation, we do not expect to find a universal 
calculation for absolute values of uncertainty regarding 3D models of geoloqically complex 
terrains in the future. However, the resulting values can be used to compare the relative 
uncertainty in the individual parts of a single model / across a single generation of methodically 
uniform models, and are primarily aimed for users who do not have the necessary deep general 
and regional geological knowledge to be aware of these uncertainties on their own – e.g. for 
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engineers and designers of underground constructions to stress out domains where more 
exploration should be realized before starting the construction works. 

 
Figure 28: Visualization of bulk uncertainty in Voxler using the ScatterPlot rendering. The values 
represent the maximum of the uncertainties based on rock types, fault categories and general 
uncertainty that has been locally reduced by certainty imposed by presence of input data - 
exploration boreholes and geological/geophysical sections. 

 

4 USE OF UNCERTAIN STRUCTURAL MODELS 
The 3D structural models that are generated, e.g. by the geological survey organizations, are not 
only used for communication purposes but also to subsequently execute process simulations, to 
estimate reserves or to estimate environmental risks. Bárbara et al (2019) for example 
investigate the impact of the structural uncertainty on the gross rock volume in two oil 
reservoirs. Witter et al (2019) give an overview of how the uncertainty can be evaluated and 
used during geothermal planning and development. 

When 3D geological models have been generated for further analysis, such as the simulation of 
fluid flow, not only the position and course of the different structures (e.g. faults and horizons) 
are important, but also how the different geological bodies are connected. The relationships 
among the geological bodies, seen as discrete elements of the model, are known as the topology 
of the model. Thiele et al. (2016a) give an overview of the description of topology in geological 
models and discuss how this topology could be determined for voxel models and for maps, how 
it can be visualized, and give some examples of how it could be used. Further they show how 
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the influence of the uncertainty in the geological structure can be analyzed by quantifying the 
topological uncertainty (Thiele et al, 2016b). 
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