
Establishing the European Geological Surveys Research Area

to deliver a Geological Service for Europe

Deliverable 8.4

A series of example Docker
containers

 Authors and affiliation:
Marcus Sen, Sainath Chintham,
Olufemi Ehindero, James
Passmore

[BGS]

Bjørn Ove Grøtan
[NGU]

E-mail of lead author:
mase@bgs.ac.uk

Version: 28-10-2021

This report is part of a project that
has received funding by the
European Union’s Horizon 2020
research and innovation programme
under grant agreement number
731166.

Deliverable Data

Deliverable number D8.4

Dissemination level Public

Deliverable name A series of example Docker containers

Work package WP8, Data provider support

Lead WP/Deliverable beneficiary BGS

Deliverable status

Submitted (Author(s)) 18/10/2021 Marcus Sen

Verified (WP leader) 18/10/2021 Patrick Bell

Approved (Coordinator) 29/10/2021 Jørgen Tulstrup

Page 3 of 17 Revision no 1 Last saved 29/10/2021 11:35

GENERAL INTRODUCTION
This deliverable has been modified from the original proposal as the primary method
for scientific projects to deliver their data has become through the EDGI platform rather
than setting up their own services. So, instead this report describes the potential
benefits for data providers who do want to set up their own services of using container
technology and the results of experiments done with containerising some example
OGC web services.

Page 4 of 17 Revision no 1 Last saved 29/10/2021 11:35

TABLE OF CONTENTS

1 WHAT ARE CONTAINERS ...5

2 RATIONALE FOR USING CONTAINERS ...5

3 TECHNICAL TRIALS UNDERTAKEN ...6

3.1 Docker ..6

3.2 MapServer ..6

3.3 Deegree ..8

3.4 GeoServer ..8

3.5 Deployment to Public Cloud ..9

4 CONCLUSIONS AND FUTURE WORK .. 10

A.1 EXAMPLE DOCKERFILES ... 12

Page 5 of 17 Revision no 1 Last saved 29/10/2021 11:35

1 WHAT ARE CONTAINERS
In brief, containers are a way of packaging application software and dependencies into
a standard file format that can then be deployed and run on a variety of generic
computing platforms. These generic platforms can treat different containers similarly
without having to know the details of the software in each container. A useful analogy is
with shipping containers which enable the transport of a wide variety of cargo using the
same handling machinery. This technology has become very popular recently as a way
of deploying and flexibly running software services. We are not intending to provide a
full or in-depth description of all the reasons for using containers here but will consider
some possible benefits in the context of enabling scientific projects such as those in
GeoERA to create web services providing their data. We will use Docker
(https://www.docker.com/resources/what-container) for all the following examples, but it
should be noted that there are now other software systems available for creating,
managing and deploying container images in the same standardised format.

2 RATIONALE FOR USING CONTAINERS
We would like to enable data providers to set up and maintain standards based
services to supply their data. Even if the final destination for a data set is the EGDI
platform, a suitable container template could provide a convenient environment for
testing and debugging configuration issues. One way this has been done in the past is
to write detailed cookbooks that guide providers through how to install particular
geospatial server software applications and configure them to use their data. For
example, the OneGeology initiative provides instructions for data providers supplying
geological map and other geoscientific data through Open GeoSpatial Commission
standard web services using a variety of software at
https://onegeology.github.io/documentation/providingdata.html. The Minerals4EU
project provides documentation on putting data into a PostgreSQL database and
serving it as an INSPIRE compliant WFS using deegree software at
https://geusgitlab.geus.dk/m4eu. Even with detailed cookbooks it can be a challenge to
produce a set of steps that can be followed by people with a wide range of
technological expertise and that can work on or be easily adapted to a range of
computing environments.
Container technologies may be able to make this easier in the following ways.
Although setting up the infrastructure to deploy containerised services is not easy,
these are generic platforms that organisations are increasingly likely to have for all their
application deployments. Thus, no special dedicated infrastructure needs to be set up
for particular geospatial services if a generic container running platform already exists.
If an organisation doesn't have such an infrastructure the services could be deployed
on public cloud services or a shared common platform such as EGDI if it was set up as
a container platform.
Many of the steps for the installation and configuration of particular server software can
be automated in the container build scripts so that errors can be minimised.
Dependencies can also be included so that customising the software installed on a
dedicated server is not required. In many cases, updating server software may be as
easy as pushing out an updated container definition which can be automatically
deployed with minimal manual steps.

https://www.docker.com/resources/what-container
https://onegeology.github.io/documentation/providingdata.html
https://geusgitlab.geus.dk/m4eu

Page 6 of 17 Revision no 1 Last saved 29/10/2021 11:35

3 TECHNICAL TRIALS UNDERTAKEN
Production container services have not been set up as part of the GeoERA project but
BGS and NGU have experimented with containerising typical services.

3.1 Docker
This is a minimal overview of Docker sufficient to understand the rest of this report.
Usually you will start with a base container image that someone else has made (you
can create them from scratch but fewer people will need to do this). The base image
commonly will contain a cut-down version of some Linux distribution1 and may have
some additional piece of application software installed and configured to run in some
particular way. In the Docker ecosystem the canonical place to find images is Docker
Hub (https://hub.docker.com) but there are other so-called “registries” where images
can be found. Some of these are official images created by Docker or verified software
publishers, others are shared by individuals who may have created them for their own
purposes.
From this starting image you can customise the image with files and software you want
to include in it using a recipe of instructions in a “Dockerfile”. As well as adding files to
the image you can run commands such as software installation or compilation
commands in the same way you would on a machine running the same operating
system as the base image.
The resulting Docker image can be run on a variety of platforms that have the generic
ability to run containers without the need for specific software or libraries for the
particular image. This could be a developer’s machine for testing, an in-house server or
server cluster or a public cloud service. There may need to be some specific
configuration for a particular container where it needs to use shared resources outside
itself. For example, mapping any network ports it uses to ones that are available on the
host system. Importantly this may also cover file storage. Although a container has its
own file system, once the container stops running, any changes made to files there are
lost. The general paradigm of running containers is that they are considered immutable
objects that can be started and stopped or replicated at will. Thus, if you have an
application that needs to persist file system data there has to be some configuration to
map parts of the containers filesystem to persistent storage on the host system. These
kinds of specific configuration are, however, of a very generic nature and don’t require
anything like the level of individual tailoring or supporting software installation that
would be required when installing application software directly onto a machine.

3.2 MapServer
MapServer (https://mapserver.org) is an Open Source platform for publishing spatial
data and interactive mapping applications to the web. It supports several Open
Geospatial Consortium (OGC) web service standards
(https://mapserver.org/ogc/ogc_support.html#ogc-support). The OneGeology project
has created documentation and example data and configuration files to provide Web
Map Service (WMS), Web Feature Service (WFS) and Web Coverage Service (WCS)

1 Windows containers also exist but are far less common and we have not looked at them.

https://hub.docker.com/
https://mapserver.org/
https://mapserver.org/ogc/ogc_support.html#ogc-support

Page 7 of 17 Revision no 1 Last saved 29/10/2021 11:35

using MapServer
(https://onegeology.github.io/documentation/providingdata.html#using-mapserver).
BGS has also created prototype WMS and WCS using some data from the GeoERA
HOVER project that use MapServer (https://mapserver.org). For Task 8.4 BGS created
a container version of these services.
There aren’t official docker images for MapServer and the MapServer project itself
doesn’t publicise a docker image version2. For the purposes of this trial, without
spending a lengthy amount of time comparing different ways to build an image, the
published code (https://github.com/kartoza/docker-mapserver) from an established
geospatial consultancy (https://www.kartoza.com/) was chosen to build the initial
MapServer docker image. The code includes a Dockerfile (shown in the appendix) and
various MapServer configurations and data files for copying into the docker image
being created. After copying the files from the Kartoza repository their example
MapServer docker image can be built on a developer machine with a simple one line
command like:
docker build -t geoerams .

This creates a docker image called geoerams on the developer’s machine which can
be run with a command like:
docker run -d -p 8080:80 geoerams

The MapServer example service is then available for testing on the developer’s
machine at http://localhost:8080
In this particular example the Dockerfile is performing a number of steps to download
MapServer source code and library dependencies and then compile the MapServer
executable. This would be a complex series of instructions to give someone to follow
manually but, as it is specified in the Dockerfile, they only need to execute the couple
of commands above to have it running.
The next step is to configure the project specific services. MapServer works by having
a number of text configuration files that are edited to configure the service and where
the source data comes from. In the Dockerfile in the appendix the section starting with
“# Start BGS configuration…” there are a number of lines that copy data and
configuration files into the container image filesystem. These data and configuration
files were taken from the pre-existing OneGeology and HOVER data services
described above. With these changes, when docker build is run with the edited
Dockerfile the OneGeology and HOVER services become available. However, while
creating new services or modifying existing ones, it is convenient to be able to edit the
configuration files while running the container to test the effect of any changes. This
can be done by specifying a mapping of directories on the local filesystem to locations
inside the container filesystem in the docker run command, e.g.:
docker run -d -v $PWD/ms/apps:/usr/local/src/ms/apps -p 8080:80 geoerams

2 There are some images on docker hub at https://hub.docker.com/r/mapserver/mapserver with
an unverified publisher http://www.mapserver.org but these have not been updated for 2 years.
There are also some Dockerfiles in the MapServer source code but these have not been kept
up to date with the latest version.

https://onegeology.github.io/documentation/providingdata.html#using-mapserver
https://mapserver.org/
https://github.com/kartoza/docker-mapserver
https://www.kartoza.com/
http://localhost:8080/
https://hub.docker.com/r/mapserver/mapserver
http://www.mapserver.org/

Page 8 of 17 Revision no 1 Last saved 29/10/2021 11:35

This means the configuration files in /ms/apps can be edited in the local filesystem and
the effect seen on the running application. When the configuration is working correctly,
another docker build command can be issued and the Dockerfile copies the same files
into the container filesystem itself. From then we have an image containing all data and
configuration that can be deployed as a single entity in different locations. In particular
BGS have deployed it on their internal Kubernetes cluster and temporarily into an
Amazon Elastic Cloud Services instance as described further on.

3.3 Deegree
NGU has undertaken work to containerise the deegree and PostGIS based technology
stack that has been created for the Minerals4EU project.
They have looked at three different approaches to doing this.:
1. Reproduce the steps of the original GEUS cookbook in the Dockerfile, using the
same war-files and configuration available at the GEUS repository.
2. Use official deegree war packages in the docker image build.
3. Use the official deegree docker images.
With each of these options, you have the possibility to separate your (preferably
versioned) configuration and deegree-instances by using mounted volumes at runtime
or by connecting to a separate PostgreSQL server (which could be a standalone
database server or another containerised service itself with data files on mounted
volumes).
Option 1 is good for education and intended for people used to setup/install manually
on Windows using the M4EU cookbook, although once an experienced person has
created the Dockerfile this may be re-usable by others with less experience.
Option 2 makes it easier to update deegree version numbers when/if security issues
arises.
Option 3 is good for not having to maintain your own docker container, but you will
have to live with some of the official degree image configuration such as a url endpoint
other than <server>/m4eu/…/

3.4 GeoServer
BGS also carried out some experiments with reproducing some of the OneGeology
GeoServer cookbook examples. One way of working with GeoServer is to edit text
based configuration files, similarly to MapServer, however the configuration has to be
reloaded after every change and the structure of the configuration files is not designed
to be human friendly. Thus, the usual way of configuring GeoServer services is to use
the web graphical interface to set things up on a running instance.
For the installation stage the manual method has various options from standalone
packages to Java Servlet Container Web Application Archive (WAR) files that can be
deployed in any of a number of available Java Application Servers. As it is a Java
program there is not much difference between using Windows/Linux or other server
operating systems once they have Java installed. As well as installing the main
application, it is common to install extensions for various purposes such as accessing
different kinds of data source or providing a greater variety of output formats etc. These

Page 9 of 17 Revision no 1 Last saved 29/10/2021 11:35

are generally just downloaded as collections of Java Archive (jar) files to be copied into
the main application directories.
For this trial an example from another well-known geospatial consultancy
(https://github.com/geosolutions-it/docker-geoserver) was used as a basis to start from.
The Dockerfile is reproduced in the appendix. This system has been designed in a
flexible way so that the docker image can be used itself to build new images using
selected extensions and other options. BGS experimented with one service using an
example GeoPackage data file from the OneGeology cookbook and one reproducing
an existing borehole WFS that accessed data from an external Oracle database and
made use of two optional GeoServer extensions.
The OneGeology example service could have been configured in a similar way to the
MapServer example above on a developer machine. This would have involved
mapping an external filesystem directory to the GeoServer data directory in the
container. Instead of editing the configuration files directly as with MapServer, the web
interface of GeoServer could then be used to configure the service and, when it was
finished, a new docker build could be run to copy the modified data directory into a new
container image. This would then be a single image deployable on any container
platform.
This time, however, a different route was chosen where the basic GeoServer image
was deployed to the BGS internal Kubernetes cluster but with a mapping of the
GeoServer data directory to persistent file storage available to the cluster. This way,
after configuring the service, the configuration persists on the cluster file system even if
the container is restarted. The data file had to be copied to the persistent storage in a
separate process.
The borehole WFS service was configured more in a similar way to the MapServer
examples as we had an existing GeoServer data directory to copy from the production
service. However, there were two notable additional conveniences afforded by the
container build process. First, installing the two required optional extensions (app-
schema and Oracle data store) simply needed their download locations specifying on a
build command. Second, it turned out that this service wasn’t compatible with the latest
version of GeoServer. Using the ability to automatically generate a new version of the
service using a different version of GeoServer simply by passing the version number to
the build command made it easy to identify the version of GeoServer where the
configuration broke. It would have been much more tedious to manually download
different versions, configure and test them.

3.5 Deployment to Public Cloud
There are a number of different cloud service providers that can host containerised
services so that once you have built an image or images you have a choice of
deploying them in many places. Major ones include Amazon Elastic Container Service
(https://aws.amazon.com/ecs/), Microsoft Azure (https://azure.microsoft.com/en-
gb/services/kubernetes-service/docker/) and Google (https://cloud.google.com/) but
there are many more.
For the purposes of this work, BGS took the above MapServer image, that had been
deployed on a local development machine and on the BGS internal Kubernetes cluster
already, and deployed it to an Amazon ECS instance. ECS has the capability to pull
container images from private registries as well as public registries like Docker Hub. As

https://github.com/geosolutions-it/docker-geoserver
https://aws.amazon.com/ecs/
https://azure.microsoft.com/en-gb/services/kubernetes-service/docker/
https://azure.microsoft.com/en-gb/services/kubernetes-service/docker/
https://cloud.google.com/

Page 10 of 17 Revision no 1 Last saved 29/10/2021 11:35

this was just a demonstration experiment a temporary machine address rather than a
permanently addressed location was used but it illustrated that the same container
image could be deployed in many locations. As with cloud-based services in general,
AWS ECS deployments are priced on task size and resource usage so this must be
taken into consideration.

4 CONCLUSIONS AND FUTURE WORK
We have carried out some experiments putting a variety of typical geospatial services
into containerised applications. We have not settled on recommendations for the best
practice for implementing services in this way but the work has suggested that this
technology could make the process of setting up and deploying services easier for data
providers in the future.
We have looked at putting the whole application in one or maybe two containers, that
is, using a similar architecture to existing standalone deployments; simply packaged
inside containers. We have not looked at major changes in the ways of delivering
services such as moving to a microservice architecture. It is interesting to note that
some moves are being made in that direction by existing geospatial software such as
GeoServer being re-packaged for cloud native deployments
(http://geoserver.org/geoserver-cloud/).
The following pattern of developing services for science data providers is suggested for
simple cases without very large data sets. This pattern could be used, for example, in
the proposed CSA successor project should that go ahead.
Data providers who want to set up their own services are given guidance on how to
install Docker and Git on their own local development computers if they do not already
have this.
Some basic template container build projects are made available either on an EGDI
maintained Git repository or a public Git repository such as GitHub. These would
enable building a basic example set of services using MapServer, GeoServer, deegree
or other software with small example data set and configuration. The data provider is
given some guidance by the support function on choosing one to use as a basis for
their own service.
The data provider creates their own version controlled project using one of the
templates and with the guidance of documentation and help desk adds their own data
and configuration. During development and debugging of the service the project can be
accessed from the central version control repository by both data provider and help
desk staff so that they can test the running and collaboratively fix problems that may be
found.
To deploy the final service the data provider may deploy on their own container
platform if they have one. (Setting up a container platform is complex so would depend
on the provider being capable of doing that themselves). If not then one option would
be to use a public cloud offering, the other that could be considered would be to have a
container platform added to EGDI so that providers could easily deploy the services
they have configured there.
The above is a generic workflow and set of platforms that could work with smaller sized
datasets supplied in some file format. If the data is to be obtained from an already
existing database then creating an application container to access that would be

http://geoserver.org/geoserver-cloud/

Page 11 of 17 Revision no 1 Last saved 29/10/2021 11:35

straightforward to configure but not so easy to collaboratively work on if the database
isn’t available from multiple locations. Working with large data sets would need some
more thought on where to store the data.

Page 12 of 17 Revision no 1 Last saved 29/10/2021 11:35

A.1 EXAMPLE DOCKERFILES
These are just illustrative examples not intended for production use.
MapServer based on https://github.com/kartoza/docker-mapserver
Mapserver for Docker ###
FROM ubuntu:focal
#If you change ubuntu version, don't forget to change 3 echo lines
MAINTAINER Admire Nyakudya<admire@kartoza.com>

ENV LANG C.UTF-8

Update and upgrade system
RUN apt-get -qq update --fix-missing && apt-get -qq --yes upgrade

#-------------Application Specific Stuff ------------------------------------

Install mapcache compilation prerequisites
RUN DEBIAN_FRONTEND=noninteractive apt-get install -y software-properties-
common g++ make \
cmake wget git bzip2 apache2 curl apache2-dev \
build-essential openssl autoconf gtk-doc-tools libc-ares-dev libc-ares-
dev libpdf-api2-perl python3-pip \
swig protobuf-compiler python-setuptools libprotobuf-c-dev protobuf-c-
compiler libcurl4

Install mapcache dependencies provided by Ubuntu repositories
RUN apt-get install -y --fix-missing --no-install-recommends \
 libxml2-dev \
 libxslt1-dev \
 libfribidi-dev \
 libcairo2-dev \
 librsvg2-dev \
 libmysqlclient-dev \
 libpq-dev \
 libcurl4-gnutls-dev \
 libexempi-dev \
 libfcgi-dev \
 libpsl-dev \
 libharfbuzz-dev \
 libexempi-dev \
 libgif-dev \
 libfcgi-dev \
 libjpeg62-dev \
 libproj-dev \
 libcairo2-dev \
 libprotobuf-dev \
 gdal-bin

RUN apt-get install -y libgdal-dev

Install PHP7.4 and necessary modules

https://github.com/kartoza/docker-mapserver

Page 13 of 17 Revision no 1 Last saved 29/10/2021 11:35

RUN apt-get install -y php7.4-fpm libapache2-mod-php7.4 php7.4-
common php7.4-cli php7.4 \
php7.4 php7.4-opcache php7.4-gd php7.4-curl php7.4-fpm php7.4-dev php7.4-
mysql php7.4-mbstring php7.4-xml

Compile mapserver and associated resources
ADD resources /tmp/resources
ARG MAPSERVER_VERSION=branch-7-6
ADD setup.sh /setup.sh
RUN chmod 0755 /setup.sh
RUN /setup.sh

Configure localhost in Apache
RUN cp /tmp/resources/000-default.conf /etc/apache2/sites-available/
RUN wget http://mirrors.kernel.org/ubuntu/pool/multiverse/liba/libapache-mod-
fastcgi/libapache2-mod-fastcgi_2.4.7~0910052141-1.2_amd64.deb \
-O libapache2-mod-fastcgi.deb && dpkg -i libapache2-mod-
fastcgi.deb && apt install -f;rm libapache2-mod-fastcgi.deb

Apache configuration for PHP-FPM # No fastcgi anymore
RUN cp /tmp/resources/php7-fpm.conf /etc/apache2/conf-available/

Enable these Apache modules
RUN a2enmod actions cgi alias proxy_fcgi fastcgi headers
RUN a2enconf php7.4-fpm

Link to cgi-bin executable
RUN chmod o+x /usr/local/bin/mapserv
RUN ln -s /usr/local/bin/mapserv /usr/lib/cgi-bin/mapserv
RUN chmod 755 /usr/lib/cgi-bin

EXPOSE 80
ENV DOCKERIZE_VERSION v0.6.1
RUN wget https://github.com/jwilder/dockerize/releases/download/$DOCKERIZE_VE
RSION/dockerize-linux-amd64-$DOCKERIZE_VERSION.tar.gz \
 && tar -C /usr/local/bin -xzvf dockerize-linux-amd64-
$DOCKERIZE_VERSION.tar.gz \
 && rm dockerize-linux-amd64-$DOCKERIZE_VERSION.tar.gz

#ifconfig not installed by default in focal
RUN apt-get install -y net-tools
ENV HOST_IP `ifconfig | grep inet | grep Mask:255.255.255.0 | cut -d ' ' -
f 12 | cut -d ':' -f 2`

Fix php startup error https://stackoverflow.com/questions/59993170/php-7-4-
and-ubuntu-18-php-startup-unable-to-load-dynamic-library-curl-so
RUN mv /usr/local/lib/libcurl.so.4.4.0 /usr/local/lib/libcurl.so.4.4.0.backup

#RUN mkdir map
#RUN chmod -R 777 map
#COPY map map

#Start BGS Configuration for the map services and data files and logs .

Page 14 of 17 Revision no 1 Last saved 29/10/2021 11:35

#Cgi-bin scipts
RUN mkdir -p /usr/lib/cgi-bin/HOVER && mkdir -p /usr/lib/cgi-
bin/BGS_Bedrock_and_Superficial_Geology && mkdir -p /usr/lib/cgi-bin/oneg
COPY /cgi-bin/BGS_Bedrock_and_Superficial_Geology/wms /usr/lib/cgi-
bin/BGS_Bedrock_and_Superficial_Geology
COPY /cgi-bin/HOVER/wms /usr/lib/cgi-bin/HOVER
COPY /cgi-bin/oneg/wms /usr/lib/cgi-bin/oneg
RUN chmod 777 -R /usr/lib/cgi-bin/*

#map files directories and moving

RUN mkdir -
p /usr/local/src/ms/apps/BGS_Bedrock_and_Superficial_Geology && mkdir -
p /usr/local/src/ms/apps/DefaultMapIncludes && mkdir -
p /usr/local/src/ms/apps/hover
COPY /ms/apps/BGS_Bedrock_and_Superficial_Geology /usr/local/src/ms/apps/BGS
_Bedrock_and_Superficial_Geology/
COPY /ms/apps/DefaultMapIncludes /usr/local/src/ms/apps/DefaultMapIncludes/
COPY /ms/apps/hover /usr/local/src/ms/apps/hover/
RUN chmod 655 -R /usr/local/src/ms/apps/*

#Httpd.d configurations
RUN mkdir -p /usr/local/src/ms/httpd.d
COPY /ms/httpd.d/* /usr/local/src/ms/httpd.d/
RUN chmod 777 -R /usr/local/src/ms/httpd.d/*

#logs directories
RUN mkdir -p /usr/local/src/ms/logs/BSG && mkdir -
p /usr/local/src/ms/logs/hov && mkdir -
p /usr/local/src/ms/apps/OUT && mkdir -p /usr/local/src/ms/out
RUN touch /usr/local/src/ms/logs/BSG/ms_error.log && touch /usr/local/src/ms/
logs/hov/err.log
RUN chmod 777 -R /usr/local/src/ms/logs/BSG/ms_error.log && chmod 777 -
R /usr/local/src/ms/logs/hov/err.log
RUN chmod 777 -R /usr/local/src/ms/* && chmod 777 -R /usr/local/src/ms/out/

add path of httpd.d to the apche2 conf
RUN echo "Include /usr/local/src/ms/httpd.d/httpd_*.conf" >> /etc/apache2/apa
che2.conf

end of BGS configuration

RUN apt-get clean && rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*

CMD ["dockerize", "-stdout", "/var/log/apache2/access.log", "-
stderr", "/var/log/apache2/error.log", "apachectl", "-D", "FOREGROUND"]

GeoServer based on https://github.com/geosolutions-it/docker-geoserver
FROM tomcat:9-jdk11-openjdk as mother
LABEL maintainer="Alessandro Parma <alessandro.parma@geosolutionsgroup.com>"
SHELL ["/bin/bash", "-c"]

https://github.com/geosolutions-it/docker-geoserver

Page 15 of 17 Revision no 1 Last saved 29/10/2021 11:35

download and install libjpeg-2.0.6 from sources.
ARG DEBIAN_FRONTEND=noninteractive
ARG CMAKE_BUILD_PARALLEL_LEVEL=8
ARG APP_LOCATION="geoserver"
RUN apt-get update && apt-get install -y unzip wget cmake nasm\
 && wget https://nav.dl.sourceforge.net/project/libjpeg-
turbo/2.0.6/libjpeg-turbo-2.0.6.tar.gz \
 && tar -zxf ./libjpeg-turbo-2.0.6.tar.gz \
 && cd libjpeg-turbo-2.0.6 && cmake -G"Unix Makefiles" && make deb \
 && dpkg -i ./libjpeg*.deb && apt-get -f install \
 && apt-get -y purge cmake nasm\
 && apt-get clean \
 && apt-get -y autoclean \
 && apt-get -y autoremove \
 && rm -rf /var/lib/apt/lists/* \
 && rm -rf /usr/share/man/* \
 && rm -rf /usr/share/doc/*

accepts local files and URLs. Tar(s) are automatically extracted
WORKDIR /output/datadir
ARG GEOSERVER_DATA_DIR_SRC="./.placeholder"
ADD "${GEOSERVER_DATA_DIR_SRC}" "./"

accepts local files and URLs. Tar(s) are automatically extracted
WORKDIR /output/webapp
ARG GEOSERVER_WEBAPP_SRC="./.placeholder"
ADD "${GEOSERVER_WEBAPP_SRC}" "./"

zip files require explicit extracion
RUN \
 if [-f "./download"] ; then \
 mv download geoserver.war.zip && unzip geoserver.war.zip -
d geoserver.war && mkdir -
p ./geoserver && unzip ./geoserver.war/geoserver.war -d ./geoserver && rm -
rf ./geoserver.war;\
 fi

zip files require explicit extracion
RUN \
 if ["${GEOSERVER_WEBAPP_SRC##*.}" = "zip"]; then \
 unzip "./*zip"; \
 rm ./*zip; \
 fi \
 && [-d "./geoserver"] || (mkdir -
p ./geoserver && unzip ./geoserver.war -d ./geoserver && rm ./geoserver.war)

WORKDIR /output/plugins
ARG PLUG_IN_URLS=""
ARG PLUG_IN_PATHS=""
ADD .placeholder ${PLUG_IN_PATHS} /output/plugins/
COPY geoserver-plugin-download.sh /usr/local/bin/geoserver-plugin-download.sh

Page 16 of 17 Revision no 1 Last saved 29/10/2021 11:35

RUN /usr/local/bin/geoserver-plugin-
download.sh /output/plugins/ ${PLUG_IN_URLS}
RUN \
 if [-f *.zip] ; then \
 unzip -o "./*.zip"; \
 fi

WORKDIR /output/webapp
RUN \
 if ["${APP_LOCATION}" != "geoserver"]; then \
 mv /output/webapp/geoserver /output/webapp/${APP_LOCATION}; \
 fi

FROM tomcat:9-jdk11-openjdk

ARG UID=1000
ARG GID=1000
ARG UNAME=tomcat
ARG CUSTOM_FONTS=""
ENV ADMIN_PASSWORD=""
ENV APP_LOCATION="geoserver"

ENV CATALINA_BASE "$CATALINA_HOME"
set externalizations
ENV GEOSERVER_HOME="/var/geoserver"
ENV GEOSERVER_LOG_DIR="${GEOSERVER_HOME}/logs"
ENV GEOSERVER_DATA_DIR="${GEOSERVER_HOME}/datadir"
ENV GEOSERVER_LOG_LOCATION="${GEOSERVER_LOG_DIR}/geoserver.log"
ENV GEOWEBCACHE_CONFIG_DIR="${GEOSERVER_DATA_DIR}/gwc"
ENV GEOWEBCACHE_CACHE_DIR="${GEOSERVER_HOME}/gwc_cache_dir"
ENV NETCDF_DATA_DIR="${GEOSERVER_HOME}/netcdf_data_dir"
ENV GRIB_CACHE_DIR="${GEOSERVER_HOME}/grib_cache_dir"
override at run time as needed JAVA_OPTS
ENV INITIAL_MEMORY="2G"
ENV MAXIMUM_MEMORY="4G"
ENV LD_LIBRARY_PATH="/opt/libjpeg-turbo/lib64"
ENV JAIEXT_ENABLED="true"
ENV PLUGIN_DYNAMIC_URLS=""
ENV GEOSERVER_OPTS=" \
 -Dorg.geotools.coverage.jaiext.enabled=${JAIEXT_ENABLED} \
 -Duser.timezone=UTC \
 -Dorg.geotools.shapefile.datetime=true \
 -DGEOSERVER_LOG_LOCATION=${GEOSERVER_LOG_LOCATION} \
 -DGEOWEBCACHE_CONFIG_DIR=${GEOWEBCACHE_CONFIG_DIR} \
 -DGEOWEBCACHE_CACHE_DIR=${GEOWEBCACHE_CACHE_DIR} \
 -DNETCDF_DATA_DIR=${NETCDF_DATA_DIR} \
 -DGRIB_CACHE_DIR=${GRIB_CACHE_DIR}"

ENV JAVA_OPTS="-Xms${INITIAL_MEMORY} -Xmx${MAXIMUM_MEMORY} \
 -Djava.awt.headless=true -server \
 -Dfile.encoding=UTF8 \
 -Djavax.servlet.request.encoding=UTF-8 \
 -Djavax.servlet.response.encoding=UTF-8 \

Page 17 of 17 Revision no 1 Last saved 29/10/2021 11:35

 -XX:SoftRefLRUPolicyMSPerMB=36000 -XX:+UseG1GC \
 -XX:MaxGCPauseMillis=200 -XX:ParallelGCThreads=20 -XX:ConcGCThreads=5 \
 ${GEOSERVER_OPTS}"

COPY run_tests.sh /docker/tests/run_tests.sh

install needed packages and create externalized dirs
ARG DEBIAN_FRONTEND=noninteractive
RUN apt-get update \
 && apt-get install --yes git gdal-bin postgresql-
client fontconfig libfreetype6 jq \
 && apt-get clean \
 && apt-get -y autoclean \
 && apt-get -y autoremove \
 && rm -rf /var/lib/apt/lists/* \
 && rm -rf /usr/share/man/* \
 && rm -rf /usr/share/doc/* \
 && mkdir -p \
 "${GEOSERVER_DATA_DIR}" \
 "${GEOSERVER_LOG_DIR}" \
 "${GEOWEBCACHE_CONFIG_DIR}" \
 "${GEOWEBCACHE_CACHE_DIR}" \
 "${NETCDF_DATA_DIR}" \
 "${GRIB_CACHE_DIR}"

copy from mother
COPY --from=mother "/opt/libjpeg-turbo" "/opt/libjpeg-turbo"
COPY --from=mother "/output/datadir" "${GEOSERVER_DATA_DIR}"
COPY --
from=mother "/output/webapp/geoserver" "${CATALINA_BASE}/webapps/geoserver"
COPY --from=mother "/output/plugins" "${CATALINA_BASE}/webapps/geoserver/WEB-
INF/lib"

COPY geoserver-plugin-download.sh /usr/local/bin/geoserver-plugin-download.sh
COPY geoserver-rest-config.sh /usr/local/bin/geoserver-rest-config.sh
COPY geoserver-rest-reload.sh /usr/local/bin/geoserver-rest-reload.sh
COPY entrypoint.sh /entrypoint.sh
COPY ${CUSTOM_FONTS} $GEOSERVER_DATA_DIR/styles
RUN groupadd -g $GID $UNAME
RUN useradd -m -u $UID -g $GID --system $UNAME
RUN chown -
R $UID:$GID $GEOSERVER_LOG_DIR $CATALINA_BASE $GEOWEBCACHE_CACHE_DIR $GEOWEBC
ACHE_CONFIG_DIR $NETCDF_DATA_DIR $GRIB_CACHE_DIR $GEOSERVER_DATA_DIR

RUN if [! -f "${GEOSERVER_DATA_DIR}/logging.xml"]; then cp -
a ${CATALINA_BASE}/webapps/geoserver/data/* ${GEOSERVER_DATA_DIR};fi

WORKDIR "$CATALINA_BASE"
USER $UNAME

ENV TERM xterm
EXPOSE 8080/tcp
CMD ["/entrypoint.sh"]

	1 What are containers
	2 Rationale for using containers
	3 Technical trials undertaken
	3.1 Docker
	3.2 MapServer
	3.3 Deegree
	3.4 GeoServer
	3.5 Deployment to Public Cloud

	4 Conclusions and Future Work
	A.1 Example Dockerfiles
	MapServer based on https://github.com/kartoza/docker-mapserver
	GeoServer based on https://github.com/geosolutions-it/docker-geoserver

