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GENERAL INTRODUCTION 
 
 
When 3D models of the geological subsurface are built with large extents, for example on basin scale, 
the underlying data are usually distributed unevenly, e.g. clustering in regions with economically 
interesting reserves, while being very sparse elsewhere. Further the data itself can only be interpreted 
with a certain degree of uncertainty, and finally the whole process of generating a 3D model from the 
different data is subject to interpretational issues, thus generating additional uncertainty. 

This uncertainty characterizing the 3D models stands in stark contrast to the way in which the 3D 
modelling results are usually visualized these days. The software packages that are used for 3D 
geological modelling, such as Skua-Gocad or Petrel, already provide visualization methods that are 
currently used to communicate the 3D models to the stake holders or the public. Further 3D models 
are published on the world wide web, using the necessary web-technology to present these models in 
a browser. The visualization is usually done by rendering stratigraphic interfaces and faults as triangle- 
or quadrangle-meshes in 3D space and it pretends that the 3D subsurface is known exactly, sometimes 
giving the position of a mesh’s vertices with a precision of up to a millimeter. In reality, however, we 
often do not know if a certain fault should be moved up or down a hundred meters, if it extends 
hundred meters more or less, or even if it actually exists at all or has a complete different shape. How 
do we express the magnitude and different types of uncertainty in our 3D models and how can we 
estimate and handle the uncertainty? Work package 4, “Uncertainty in Geomodels” which is part of the 
GeoERA project 3DGEO-EU, will work towards establishing the necessary workflows to provide a 
visualization of the 3D models, including their uncertainty.  

One important question concerns the requirements which the handling and presentation of the 
uncertainty add to the overall requirements for the EGDI infrastructure. These might involve some 
requirements regarding the data management but mainly will affect the visualization backend, in order 
to be able to make the users aware of the uncertainty. The purpose of this report is to sum up and 
motivate these additional requirements. 
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1 INTRODUCTION 
When constructing 3D regional models of the subsurface, the geoscientist has to deal with a 
wide range of different types of uncertainty. As shown in Figure 1, the uncertainty should 
already be estimated and assessed during the acquisition and interpretation of the data which 
later form the basis of the 3D model. The location of markers for faults and horizons that are 
interpreted from borehole data is uncertain, especially when old logs from the archive have to 
be used, as the tools to determine the borehole path had, and still have, only a limited precision 
(see e.g. Wolf & Wardt, 1981). When seismic imaging is used, different sources of uncertainty 
are introduced in the different steps of the seismic processing sequence, especially during the 
time to depth conversion as often the velocity model can only be estimated with a limited 
precision (for an overview, see e.g. Thore et al., 2002). 

During the next step, namely the geometrical modelling phase during which the 3D geological 
model is built, the propagation of the uncertainty that comes from the input data must be 
assessed and its influence on the final model estimated. Sometimes there are insufficient data 
available for a large area and the modeller has to provide some kind of model-based 
interpretation in order to fill the void space in the 3D model. So the modellers have to make a 
decision on which conceptual models they should apply (e.g. the deformation style? flexure or 
fracture?) which introduces additional uncertainty, often called conceptual uncertainty. The 
approach commonly used to assess all these uncertainties in the resulting 3D model is the use 
of Monte-Carlo Simulation (see, e.g., Wellmann & Regenauer-Lieb, 2012 or Schweizer et al., 
2017). Different realizations of the 3D model are generated by first sampling into the input data. 
The depth of a borehole marker might, for example, be given as a Gaussian distribution function 
and for each realization the depth is randomly drawn from this function (see, e.g., Pakyuz-
Charrier et al., 2018). Subsequently, a 3D model is generated for each set of randomly drawn 
data. These different models are then visualized or ideally could be summarized to be 
represented as one model which expresses the geology and its uncertainty (see, e.g. Wellmann 
& Regenauer-Lieb, 2012). When the resulting uncertain structural geological model is 
subsequently used for process simulation, it has to be propagated with attributes, such as 
permeability, which also involves uncertainty. Many methods have been developed to treat this 
uncertainty, especially in the oil & gas and the mining industry to optimize exploitation and 
minimize risk (see e.g. Pyrcz & Deutsch, 2014). A general overview of these first two steps with 
respect to the uncertainty of structural models has been given in Deliverable 4.2 of the GeoERA 
project 3DGEO-EU (Zehner et al., 2021) 

The last, but nevertheless important, step in Figure 1 is the visualization. When the 3D models 
generated are presented to the public and the stakeholders, they should be made aware of 
these uncertainties in those models. Currently the representation of the geological models as 
triangle- or quadrangle-meshes often pretends that the position of geological structures is 
known with a precision of a centimetre. It is one of the primary targets of this work package to 
find a good visualization which shows the uncertainty in 3D geological subsurface models and 
where this uncertainty is coming from. The visualization should be easy to understand and 
intuitive and might vary for different types of viewers, e.g. for experts and novices. A discussion 
of these different visualization options can be found in Zehner (2021) and Deliverable 4.1 
(Zehner, 2019). 
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The aim of the work package “Uncertainty in Geomodels” is to structure the whole discussion 
on uncertainty in our 3D geological models and its quantification and visualization from the 
viewpoint of geological surveys. What is already there and what are the gaps? The work package 
provides a knowledge base to assist in the future use of the visualization methods already 
established in geosciences and also establishes the basis for future cooperation with other 
research disciplines, such as computer graphics, to fill the gaps identified. 

 
Figure 1: The different general steps to build and display a 3D geological model where the 
uncertainty has to be assessed. 
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In order to achieve this, the whole work package is structured in terms of four different tasks 
(see Figure 2). During the first half of the project, the aim of the first two tasks has been to 
establish and document the methods and concepts required. Task 1 captured the state of the 
art in uncertainty visualization (options for step 3 in Figure 1) and in this manner also provides 
information about which type of data we need to compute in order to be able to display the 
uncertainty in our models. It thus sheds light on where we might go and what we will need for 
it. Task 2 discussed the different sources of uncertainty and the methods to propagate this 
uncertainty through the 3D modelling process (steps one and two in Figure 1). Task 3 and 4 in 
the second half of the project applied the methods described, in order to test different 
visualization options, generated some example data sets and discuss the requirements that the 
assessment and visualization of uncertainty will have for the European Geoscience Data 
Infrastructure. 

 

 
Figure 2: General structure of the 3DGEO-EU work package “Uncertainty in Geomodels”. 

 

The overall outcome of the project is a structured and documented overview of what is already 
available for the treatment and visualization of uncertainty and thus acts as a point of transfer 
for the necessary knowledge and skills from computer sciences to geosciences. Further it tries 
to suggest some best practices and workflows for how the visualization of uncertainty could be 
incorporated into the current standard workflows for 3D geological modelling. Finally the work 



 

       
          

 

 

 

 

Page 5 of 30 

 

package identifies what still needs to be developed and provide the necessary means, gap 
identification and corresponding example data sets, to give potential outside partners, such as 
computer graphics groups at universities, the motivation to do research towards developing the 
methods lacking. 

If the European Geoscience Data Infrastructure (EGDI) is to be used in the future for storing and 
visualizing 3D geomodels that have been analysed for and augmented with uncertainty 
information, some additional requirements must be met that are beyond the usual 
requirements for storing and visualizing 3D geological models of the subsurface. This report is 
the deliverable of Task 3 and captures and motivates these special requirements for the EGDI 
infrastructure and the information platform. The general processing is usually done by scientists 
with specialized software. The EGDI infrastructure is mainly used for the dissemination and 
visualization of the results. For this reason, there are some requirements towards the data 
management of the 3D models and some requirements for the visualization. Deliverable 4.1, the 
report on the state of the art in uncertainty visualization (Zehner, 2019) and Zehner (2021), 
showed that a wide range of visualization methods are available that show the uncertainty 
within 3D models. However, most of them are quite specialized to show very specific types of 
uncertainty, for example in flow fields. For the EGDI we should focus on the more general 
methods that are needed to show the structural uncertainty. The methods available that can be 
easily implemented are explained in this document. 
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2 REQUIREMENTS FOR EGDI 
Deliverable 4.1 and Zehner (2021) gave an overview of the many methods for visualization of 
uncertainty that have been published in the past in computer science literature. They have often 
been developed with data from other scientific disciplines in mind, such as medical sciences or 
engineering, but could be used for uncertain geoscience data with similar data types and 
representations. In order to get an overview and to decide which methods are suitable for a 
certain geoscience problem, they have been classified according to two different criteria which 
allows us to sort the methods into a 2D matrix: 

• The first criterion is in which form or where the data should be presented overall. Should 
they be presented as a map, or at point locations on a map or in 3D space, or along lines, on 
polygons or on volumetric 3D cells? This makes an important difference regarding the 
usability of the methods. To give an example: image-based techniques, such as Line Integral 
Convolution, will not be suitable to present data or uncertainty at point or line locations. 
They would require a map or a surface in 3D space onto which they can be projected. 

• The second criterion is which type of data we want to show together with its uncertainty. 
This could be spatially distributed scalar data for which the standard deviation is given, 
vectors for which the direction and magnitude is uncertain or tensors with an uncertain 
orientation. Further the actual position and orientation of the object we show might be 
uncertain or it might be uncertain if a shown object, such as a stratigraphic layer, exists at 
all at the given location (uncertain presence). 

Zehner (2021) sorts the different methods into this 2D Matrix and gives the corresponding 
references where they are described in more detail. However, usually only the methods have 
been described algorithmically but no sample implementation is provided. This leads to an 
additional work load for each visualization method that should be provided and this work load 
can be considerable when the method is complex or requires further processing of the data to 
extract the visualized features. So, while in the optimal case, all the different visualization 
methods above would be implemented, and the corresponding data models would be included 
in a 3D database, this could not be done in the current time-line. It makes sense to do some kind 
of cost-benefit consideration as some of the methods outlined in Deliverable 4.1 would possibly 
be needed very rarely. 

2.1 Which methods are needed most frequently and most urgent? 
In the first instance it makes sense to look at what the most commonly used data 
representations and types will be. Partners in the GeoERA project 3DGEO-EU are mostly 
geological surveys and the European Geoscience Data Infrastructure (EGDI) will most likely serve 
to present regional geological data and structural models with or without uncertainty and some 
additional data, such as facies. In Deliverable 4.2 (Zehner et al., 2021) we provide an overview 
of available workflows and application cases for assessing uncertainty in structural models. 
Nearly all of them lead to one of the two following representations: 

1. Voxel models with uncertain voxel classification: Several workflows that are published lead 
to voxel models. The TNO-Geological survey of the Netherlands takes a surface-based 
structural model as input and uses Geostatistics to estimate for each voxel to which 
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lithological class it belongs with which probability (see Stafleu et al., 2011, and Stafleu & 
Dubelaar, 2016). De la Varge et al (2019) describes a workflow and corresponding open 
source implementation that takes uncertain data, such as uncertain locations for the 
borehole markers, and generates multiple realizations of the geological model. These 
multiple realizations are then summarized as a voxel model, where each voxel holds, for 
example, the most likely stratigraphic unit and the information entropy. Pakyuz-Charrier et 
al (2018) use the software GeoModeller to generate a number of realizations for their 
example models and display information entropy as a measure of uncertainty. So, for voxel 
models we want to show two attributes simultaneously – the information about the 
stratigraphic unit or lithological class to which this voxel belongs, usually as some integer id, 
and the additional information about the extent to which this information is uncertain. 

2. Surfaces with attached geometrical uncertainty: The Structural Uncertainty workflow that is 
part of the Skua-Gocad software can be used to calculate multiple realizations of a horizon 
or a fault from given uncertain input data. This multiple horizons can directly be visualized 
(see Schweizer et al. 2017 for an example) or be used to calculate the standard deviation for 
each vertex along the normal of the surface. Another example is the uncertainty assessment 
for the deep geological model of the Netherlands, DGM-Deep, Kombrink et al. (2012). Here 
the Monte Carlo approach is used in order to assess the uncertainty that is due to the picking 
of a horizon and further processing, due to structural complexity and due to the error in the 
velocity model. The result is a 2.5D horizon model, where for each vertex the depth and the 
standard deviation for the depth are given. 

Further, in order to explain to the potential viewers where the uncertainty is coming from, it 
might be helpful to have the option to show these data and their uncertainty. Examples would 
be the uncertainty for the borehole markers that could be shown as ellipses that represent the 
95% confidence envelope around a point or the uncertainty of the borehole path, rendered with 
an increasing diameter when it is less well known in deeper sections of the borehole. So, to 
summarize, the most important methods that should be made available for geoscience 
visualizations are the visualization of uncertain categorical scalar data on maps, on sections and 
as volumetric data, and the visualization of geometrical uncertainty of points, lines and surfaces 
in 3D space. 

2.2 Requirements for the data management 
EGDI will not be used to support the calculation and processing of the uncertainties. However, 
the data infrastructure should be able to store and distribute the resulting models and the 
information on their uncertainty. In general the representation of the models will be the same 
as for the certain representation. The models will consist of points, lines, polygons or cells, which 
each carry additional information as attributes. This could be, for example, to which geological 
unit they belong or what type of geoscience entity they represent (e.g. fault or horizon). 
Assuming that the EGDI platform will not implement specialized algorithms to further process 
the uncertainty, there are two ways to present the uncertainty in the database, both of which 
should be available. The uncertainty could be represented by additional geometry that is stored 
in the database, or the uncertainty is stored as an additional attribute for the vertices, pixels or 
primitives of the geometry, and the visualization that is needed to show this uncertainty is 
created on the fly. It should be mentioned that these requirements already need to be fulfilled 
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for the data management, independently of the additional need for the handling of uncertainty. 
The different types of attributes need to be handled anyway, for example to store an Id to 
represent geological units (integer numbers representing classes), local permeability or porosity 
(scalar numbers), the flow field in hydrogeology (vector data) or the local stress and strain 
(tensor data). So it makes sense to support the full set of needed requirements in terms of data 
management while the implementation of specialized visualization methods could be shifted 
into the future. 

2.2.1 Storage as additional pre-processed geometric representation 

For some of the uncertain 3D models, additional geometries could be used to show the 
uncertainty in the model. An example would be to compute additional surfaces that represent 
the confidence envelope around a horizon or a fault. This confidence envelope has the same 
type of representation as the original surface itself and so could be stored in the same way in 
the database. However, the original representation and the added geometries should be linked, 
so that it is obvious that the latter augment the former with additional information. 

2.2.2 Storage as attributes 

The parameters that describe the uncertainty, such as the standard deviation, could be saved 
for each vertex, pixel, voxel or geometric primitive (that means e.g. triangle, quadrangle in 3D 
space or a tetra- or hexahedron). In general 4 different types should be distinguished: 

1. Uncertain scalar data: This could be an uncertain attribute, such as porosity or thickness 
of a layer. The data for each vertex or cell would then be described by a pair of scalar 
numbers – the mean of the attribute and the standard deviation or variance. 

2. Geometric uncertainty on a map: some point that is pictured on a map might actually 
be displaced, as its position is uncertain. This possible displacement can be imagined as 
an ellipse, described as a 2x2 matrix that can be stored as a 4-component vector. Further 
texture based methods could be used that turn the point into a fuzzy object to indicate 
the uncertainty. 

3. Geometric uncertainty in 3D space that is measured along a vector. This is usually either 
the vertical (elevation with standard deviation) or the vector normal to the surface at 
the vertex position (vertex-normal). 

4. Geometric uncertainty in 3D space: A point is possibly displaced in 3D space. The stan-
dard deviation can be imagined as a 3D ellipsoid, described as a 3x3 matrix that can be 
stored as a 9-component vector. This Matrix can be calculated as follows where r1 to r3 
are the unit vectors describing the orientation of the ellipsoid in 3D space:  

𝑇𝑇 = �
𝑟𝑟11 𝑟𝑟12 𝑟𝑟13
𝑟𝑟21 𝑟𝑟22 𝑟𝑟23
𝑟𝑟31 𝑟𝑟32 𝑟𝑟33

� ∗ �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑚𝑚𝑚𝑚𝑚𝑚 0 0

0 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑚𝑚𝑚𝑚𝑚𝑚 0
0 0 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑣𝑣_𝑚𝑚𝑚𝑚𝑚𝑚

� ∗ �
𝑟𝑟11 𝑟𝑟21 𝑟𝑟31
𝑟𝑟12 𝑟𝑟22 𝑟𝑟32
𝑟𝑟13 𝑟𝑟23 𝑟𝑟33

� 

While the uncertain scalar data could be visualized using colour mapping, the geometric 
uncertainty needs another representation, e.g. by computing additional geometries as 
described above or by using glyphs. In both cases the visualization could be pre-computed which 
would make it easier to fulfil the requirements but comes with drawbacks, as will be indicated 
below in the corresponding sections. 
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2.3 Requirements for the 3D visualization 
2.3.1 Use of 2D colour maps and corresponding user interface 

The use of colour mapping for the representation of scalar data is very common, for example on 
maps, when representing the geological units at the surface on geological maps (categorical 
scalar data) and the heights of the terrain using colour codes (continuous scalar data). Usually 
either a number of bins for the data values and corresponding colour codes are defined 
(categorical data) or a colour map is defined as a continuously changing set of, for example, 256 
or 1024 different colours and the data are mapped to these colours linearly. The final definition 
of the colours is usually done using the RGB colour model (Red, Green, Blue) where each of the 
three values is either given as an 8 bit integer with the range [0 : 255] or as a floating point 
number with the range [0.0 : 1.0]. The RGB colour model is inherently the representation of the 
colours in most software systems and OpenGL and in many standards, such as VRML and X3D. 
It is also the representation of colours used by monitors and on graphics boards. 

However, in our case we want to represent two data at time: 

1. The original data value (e.g. the colour for the stratigraphic unit or the mean of a physical 
value at a certain point) 

2. Its uncertainty (given e.g. as the probability that this point really belongs to the indicated 
geological unit or as the standard deviation of the physical value) 

In this case it is preferable to do the mapping from data to colour in a different colour model 
first and then to convert the resulting colour into the RGB colour model. One good model for 
such a task is the HSV (Hue-Saturation-Value) colour model, which is explained in Figure 3. 

 
Figure 3: HSV colour model. Top left: representation as a colour wheel (screenshot from Paradigm’s Skua-
Gocad software). The fully saturated colours are on the circumcircle. The saturation decreases towards the 
centre of the circle and is zero at its centre. The centre of the circle is actually an axis with colours ranging 
from white (Saturation is 0 and Value is 1) to black (Saturation and Value are 0). Bottom left: Different 
representation of the same colour model in Skua-Gocad. The fully saturated colours from the circumcircle 
were rolled out from left to right while the saturation changes from top to bottom. Right: graphical 
representation explaining the interrelation of the RGB colour model (cube at the top) and the HSV colour 
model (up-site-down cone at the bottom), modified from Zehner et al. (2010). For a quantitative 
explanation and for pseudo-code for HSV to RGB conversion see Foley et al. (1996).  
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When using the standard representation as a colour wheel (top left of the Figure), one data 
component is mapped to Hue, which represents a colour on the circumcircle of the HSV colour 
model. A second component is mapped to the saturation, which means mapping this colour 
along the radius of the circle. If the second data component is at its lower threshold, it is mapped 
to a saturation of zero and we are at the centre of the circle (white, grey or black, depending on 
Value, chosen on the linear slider on the right). When the colour has been determined in the 
HSV colour model, it can easily be converted to RGB colours, using standard procedures which 
are, for example, given in Foley at al. (1996), including a code example. 

Using colour mapping in order to represent scalar data is a very general method that can be 
applied on a wide range of geometries and on maps. We could, for example, have a triangle-
surface (horizon) that is coloured according to its data value and fades into grey where the data 
value is increasingly unknown. Figure 4 shows an example of a geological cross section where 
the colours represent the different geological units, which are uncertain near to the stratigraphic 
interfaces and to the right of the section. For further examples see Zehner et al (2010) and Hengl 
(2003). Zehner et al. (2010) also gives an example of how a user-interface that allows for 
interactive investigation of the data set might look. 

 
Figure 4: Example of a visualization of a cross section with uncertainty. The uncertainty is higher 
near to the stratigraphic interfaces and the faults than within the units and overall increases to 
the right, which, for example, could be due to the lack of data. The cross section shown is an 
extraction from a voxel data set. 

Requirements for the user interface 

In order to find the optimal settings for the colour mapping, a user interface is needed that 
allows us to fine tune the different settings and gives an immediate response. Figure 5 shows an 
example of how a user interface for a 2D transfer function could look like, inspired by the user 
interface used in Zehner et al. (2010). Each data value that should be mapped to a unique colour 
consists of a pair - the actual data value and its uncertainty. The distribution of the data values 
and of the uncertainties could be shown as histograms to the user, in order to make a more 
informed decision when adjusting the settings for the colour mapping. Often there are some 
very high or some very low data values that do not need to be distinguished, so that it is possible 
to clamp the data range which is mapped to the colour, in order to make the spatial distribution 
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of the main bulk of the data more visible. The same can be done with the colour mapping of the 
uncertainty. A certain degree of uncertainty might be acceptable, allowing to clamp the colour 
mapping for all values with lower uncertainty. The same could be done for high uncertainties. In 
this way patterns in the distribution of the uncertainty become more visible.  

 

 
Figure 5: Diagram explaining the different settings that can be used to influence the colour 
mapping. Each datum is represented by a pair - the actual data value and its uncertainty. Often, 
a few very high or very low data values do not need to be highlighted to be distinguished from 
the mass of data, so that the colour mapping can be clamped, making the spatial variation in the 
bulk of data more visible. The same might be true for very low and very high uncertainties. 

The values that the users must be able to set interactively are the low and high clip values for 
the data and for the uncertainty. The resulting colour-map that depends on the data values is 
then shown and the visualization can be adjusted accordingly. Further it would be preferable for 
the user to load predefined colour maps, which would require that they are converted properly 
into a HSV representation, and that the user can also use categorical data and a simplified colour 
map. 
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Precomputed colours versus on the fly colour mapping 

It would be possible to apply the colour to the data directly and to store a geo-referenced colour 
image instead of a 3D model with colour on its vertices or a model or a map with data. This 
would allow us to use standards that are targeted at visualization purposes, such as image 
formats (for maps) or X3D for 3D models. However, this approach has two disadvantages. Firstly 
the users who retrieve the data only obtain a representation of the model. They cannot sample 
the attribute’s values from the model, as the model does not know the original attribute – it 
only knows the colours. Secondly the colour map that has been chosen must be chosen in a way 
that is optimal for looking at the whole model but when looking at details or at sub-regions, 
another colour map would possibly be preferable. To give an example, let us assume we have a 
large field with the data and its uncertainty clustering around one mean in a region in the north 
of the field and around another mean in the south of the field (the histogram has a bivariate 
distribution). If we would investigate the north region for data distribution, we would use a 
different colour table for the north region than for the south region in order to spread the colour 
range that corresponds to each of the data ranges and thus shows more detail. For this reason 
it makes sense to transmit the original data and to create the visualization (colour mapping) on 
the fly using lookup-tables or transfer functions. The users could then interactively play with the 
data and the colour table to find the best settings in order to extract the important information 
in their region of interest. 

2.3.2 Use of translucency 

Translucency could, for example, be used to indicate the uncertain presence of a geologic 
feature, such as a horizon. When the uncertainty with respect to the occurrence of a horizon at 
a certain position increases, it becomes more and more translucent and so fades away. 
Translucency can usually be defined for each vertex or primitive (triangle or quadrangle) and is 
then part of the colour definition. Instead of a three component vector with the colours (RGB), 
a four component vector is given where the last component defines the translucency (RGBA, 
where A stands for alpha value). Ideally the translucency is defined interactively by a transfer 
function on an attribute that could represent the uncertainty, such as variance or standard 
deviation. Translucency can be used very nicely to indicate that the presence of some geologic 
feature, e.g. a horizon or a fault, is uncertain (which means that we are unsure if it even exists 
at the given location). 

2.3.3 Usage of glyphs and additional geometry 

Glyphs and additional geometry can be used to indicate within which range a point, a vertex of 
a horizon, a line or a surface might be displaced in 3D space. Examples could be: 

• Several semi-translucent spheres or ellipsoids that are rendered as hulls around points, 
such as borehole markers, to indicate different confidence intervals. 

• Several semi-transparent tubes that are rendered as hulls around lines, such as a 
borehole path, to indicate different confidence intervals. 

• Several semi-transparent surfaces that act as a confidence envelope around a surface in 
3D space representing the equivalent of a confidence interval. 

Figure 6, Figure 7 and Figure 8 show examples of this type of uncertainty visualization using 
additional geometry. They are explained in more detail in the state of the art report on 
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uncertainty visualization (Zehner, 2019). Some of these geometries could be precomputed and 
stored in the database as additional geometries. This could be done, for example, when the 
generation does not only depend on local data and thus is too complicated, so that it cannot be 
expected to be done by the 3D viewer. 

Glyphs can easily be computed locally and applied to represent the uncertainty when it is given 
for each vertex. The glyph is given as a small triangulated surface, for example a triangulated 
sphere with a radius of 1 and its centre at the origin. When the geometrical uncertainty is given 
along a line or along the vertical the glyph must be rotated and properly aligned and 
subsequently scaled by a multiple of the standard deviation, depending on which confidence 
interval should be shown. Finally it is transformed to the position of the vertex. When the 
uncertainty is given as a real 3x3 matrix, the vertices of the glyph can be transformed with the 
3x3 matrix that describes the standard deviation, using matrix multiplication. Then the sphere 
(now an ellipsoid) can be scaled to describe a certain confidence interval and finally be translated 
to the location of the point. The same technique could be applied to place and orient 2D glyphs 
on a map, using a 2x2 matrix. 

 
Figure 6: Visualization of points (here borehole markers) and lines (here the borehole paths) with 
geometric uncertainty assuming that the uncertainty is isotropic. 

 

 
Figure 7: Visualization of points (here borehole markers) and lines (here the borehole paths) with 
the uncertainty of the locations described as a tensor (anisotropic uncertainty). 
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Figure 8: Examples of the visualization of geometric uncertainty on surfaces for a synthetic 
geoscience data set. The assumption is that the position of the boundary between the different 
units is less well known when it is steep or vertical, because it is often not visible in seismics in 
this case. Top picture: The upper horizon becomes increasingly translucent when its presence is 
less secure. Further the possible displacement is indicated by lines (needles). For the lower 
horizon (salt) the colour becomes less saturated (grey) with decreasing knowledge of its position. 
The possible displacement is indicated by the green cylinder. Bottom picture: The possible 
displacement of the horizon is indicated by the size and colouring of sphere glyphs. 

It should be noted that the use of glyphs for data representation is not specific for the 
representation of uncertainty. In particular the use of glyphs that are specifically set at each 
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vertex location can be used for a wide range of applications, such as the visualization of a vector 
field that indicates fluid flow patterns. 

 

Requirements for the user interface 

For the user interface we have to distinguish if the geometries that represent the uncertainty 
have been precomputed or not. 

For precomputed geometries, e.g. the envelopes around surfaces or lines, the different 
geometries should be grouped as one object in the user interface. To give an example: If the 
users select an object, e.g. a borehole, they are shown several check boxes that allow them to 
switch the representations of the borehole path and the 50%, 75% and 90% confidence envelope 
on and off. Another option would be to use a hierarchical tree structure where choosing an 
object (e.g. the borehole) flips open the next hierarchy allowing to switch on and off the path 
and the confidence intervals. 

When the uncertainty is given per vertex, the geometries to visualize it could be computed on 
the fly. The user interface should then allow the users to set several parameters: 

• Choose the shown glyph (e.g. line, arrow, sphere …) from a list of glyphs. 
• Set a global scale factor that is applied to all glyphs. 
• Choose the vector attribute that is used to align the glyph, e.g. the surface normal. 
• Choose the attribute which is used to define the transformation for each individual 

glyph (the attribute containing the 3x3 or 2x2 matrix or a scalar attribute that is used 
for isotropic scaling). 

One example of a software that allows us to set these parameters and so could serve as an 
example is the software Paraview (www.paraview.org). When uncertainty is isotropic or aligned 
to a certain vector attribute, such as the surface normal, Paraview’s glyph filter can be used and 
two attributes can be chosen - a vector attribute for the alignment and a scalar attribute for the 
scaling. When the uncertainty is anisotropic (given as a 3x3 matrix), Paraview’s tensor-glyph 
filter can be employed which directly uses the matrix and can be scaled additionally to represent 
the desired confidence interval. 

Precomputed versus on the fly computation of geometry 

This question is only relevant for glyphs that are computed locally for each vertex, as the 
computation of geometry that does not only depend on the local uncertainty is quite complex 
and would exceed what could be expected from a 3D viewer. In the case of glyphs that should 
be added for each vertex, the computation could be implemented quite easily.  This would allow 
the users to analyse interactively the data on a more local level. They could, for example, 
interactively choose an appropriate scale factor, so that glyphs are rendered in a size that shows 
the uncertainty pattern in a certain region especially well. However, the advantage is less 
obvious than in the case of colour mapping.  

2.4 Application Programming Interface (API) 
Many of the visualization methods that have been described in Zehner (2021) and Zehner (2019) 
would require too much effort to be implemented in the 3D viewer for the EGDI. Examples are 

http://www.paraview.org/
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the use of volume visualization to represent the uncertainty in volumetric models or the 
visualization of vector fields with uncertainty which is not relevant within the GeoERA project 
3DGEO-EU, but might become relevant in the future. When the data model can handle attributes 
with multiple components, e.g. vectors, and does support the above mentioned types of 
uncertainty, it could already handle these requirements that might become interesting in the 
future.  

In this case it would be beneficial for the 3D viewer to also be extended to render this new 
uncertain information. This extensibility could either be given in the form of a plugin mechanism 
or by developing the 3D viewer in an object oriented manner as open source software. 
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3 EXAMPLE VISUALIZATIONS USING WEB-TECHNOLOGIES 
Several example visualizations have been created in order to demonstrate different visualization 
options for uncertain geological models in conjunction with the EU report on the state of the art 
in uncertainty visualization (see Zehner, 2019). While these visualizations are based on the 
publicly available software Paraview, they require that the users install Paraview and acquire 
some minimum knowledge of how to use it. As Paraview is a general software for scientific 
visualization, this can already become quite confusing for people who neither have experience 
with 3D modeling nor with 3D visualization, and the level of reluctance can be assumed to be 
quite high. Further, the models need to be converted into VTK format which is, thus far, not a 
standard format for geoscience applications. Another problem with Paraview is that it does not 
support interactive manipulation of 2D colour tables or transfer functions, which would be a 
plus when visualizing uncertain data. 

So, as a next step towards making these visualization methods available in the EGDI, some of 
the example visualizations have been implemented as web applications in javascript and based 
on the scenegraph Three.js (www.threejs.org). These applications run interactively in a browser 
and allow for the interactive manipulation of the 2D colour map. The implementation has been 
done in such a way that the functionality is encapsulated in classes that are mostly derived from 
Three’s standard classes. Instead of the Geometry class of Three.js we implemented our own 
classes to display different data types. They are derived from Geometry but hold not only the 
usual vertices and triangle lists but also additional data that describe attributes and their 
uncertainty for each vertex or voxel. Attributes can then be used to colour the vertices with the 
help of a 2D colour table or to compute additional glyphs or envelope surfaces in order to 
express the geometrical uncertainty of the surface shown. This implementation should make it 
easy and efficient to incorporate the visualization method into other 3D software that has been 
created based on the same scenegraph. However, this might not hold for the user interface 
required to interact with the objects. In the following, we describe the generated classes in more 
detail. 

2D colour tables 

Two classes have been implemented for 2D colour mapping. The first class, ScalarColorTable2D, 
maps a scalar attribute, that needs to be shown, to a saturated colour  and fades the colour into 
grey as the value of another attribute increases that is usually a measure of the uncertainty of 
the first data value (such as standard deviation, variance or information entropy). In this way, 
the data is mapped to a saturated colour, where it is certain, and appears greyish/dirty, where 
it is uncertain (see Figure 9 for an example). In the first example (top) the histogram for the 
uncertainty (aligned vertically to the left of the table) shows that there are few points with a 
very high uncertainty which are responsible for the fact that the intermediate uncertainties near 
to the faults are less visible. In such cases it makes sense to clip the high end of the uncertainty 
mapping to lower values, so that the regions with intermediate uncertainty become more visible 
(bottom).  

http://www.threejs.org/
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Figure 9: Mapping of data/uncertainty pairs as colour onto the vertices, using a 2D colour table. 

The second colour-table-class, CategoricalColorTable2D, maps Integer numbers that represent 
Ids, for example for the stratigraphy or the facies, to pre-defined colours. These colours are 
faded into grey with increasing uncertainty (see Figure 10). 

Both tables can be used in two different ways. The first one uses the tables directly via their data 
values. The clip values for the data attribute and the uncertainty attribute are set. Then the 2D 
colour table can be used to obtain a colour for a given [data value, uncertainty value] pair and 
to set this colour for the corresponding vertex. The other option is to use texture mapping. 
Instead of setting the vertex colour for each vertex of the object, the colour map is set as texture 
for the object, and the data value und uncertainty value are mapped to texture coordinates. One 
advantage of the texture mapping way would be that alpha mapping could be used to make the 
object semi-translucent in dependency of the data value. Using Three.js this could not be done 
when colouring the surface using vertex or face colours, as Three.js only supports 3-component 
colours for this purpose (no RGBA colours with alpha value). 

  

Figure 10: Mapping of categorical uncertain data (stratigraphy), using a 2D colour table. 
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The colour tables store the different settings that a user has chosen, for example the values for 
which high uncertainties are clipped, and so one table is generated for each variable. The 
generation is done automatically by using a global instance of the class ColorTableFactory which 
returns a colour table for a given variable name. If no colour table has been predefined for a 
given variable, the ColorTableFactory returns the default colour table.  

3.1 Visualization of triangle meshes with uncertain geometry and data 
This example shows how the typical 3D triangular meshes that are often generated using the 
software Skua-Gocad could be visualized when they have additional data that should be shown 
together with their uncertainty or when the geometry itself is uncertain. The visualization is 
mainly based on two classes, the class TrglGeometryWithData, derived from THREE.Geometry 
and the class TrglGeometryWithDataGroup, derived from the Three.Group class. 

TrglGeometryWithData 

This class represents a triangular mesh in 3D space and is derived from the Geometry class of 
Three.js. In addition to the Geometry class it handles additional attributes (currently continuous 
scalar data as float numbers) which belong to each vertex. The data are read from a Skua-Gocad 
TSurf ASCII file or directly from the EGDI database (see below). Using the additional data, an 
object of the above described ColorTable class can be used to colour the surface accordingly, 
either only by using it as a 1D colour table for the data values or by incorporating a second 
attribute that describes the uncertainty of the data values. 

When the uncertainty data represent geometric uncertainty, for example as a standard 
deviation that defines how much a vertex might be displaced perpendicular to the surface, the 
uncertainty could be shown in the form of additional geometry. The TrglGeometryWithData 
class provides two functions that calculate such a geometrical representation and returns it as 
an object of the type Three.Geometry. The first one computes glyphs (conical cylinders) that 
point along the surface normal and indicate with their length how much the surface might be 
displaced with a certain confidence. The second one calculates two surfaces (the envelope), one 
above and one below the original surface (or one outside and one inside the salt dome in this 
case) by displacing the surface along the surface normals with a magnitude that depends on the 
given standard deviation per vertex. In the example, the length of the glyphs and the distance 
of the envelope surface to the original surface are set to 1.96 * standard deviation which 
corresponds to the 95% confidence interval. See Figure 11 for screenshots. 

For horizons it may furthermore be necessary to indicate the geometric uncertainty but also to 
indicate that the occurrence of the horizon is unsure at a specific location. When a horizon is, 
for example, in contact with a fault or with a salt diapir for which the extent is unknown, then 
the extent of the horizon is unknown too. To indicate this, a variable called pr_presence can be 
defined that specifies the probability that a horizon occurs at a specific location. Generally a 
good way to display this uncertainty would be to fade the horizon into translucency with 
decreasing probability of occurring. However, as Three.js does not support 4 component (RGBA) 
colours on the vertex level, we instead fade the horizon to white where the probability of 
occurrence is low (see Figure 12). 
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Figure 11: Visualization of geometrical uncertainty, using glyphs (left) and a translucent envelope 
surface (right), both indicating the 95% confidence interval. 

 

 
Figure 12: The occurrence of the horizons is unsure near to the salt diapirs as the extent of the 
diaper is unknown (indicated by the glyphs). For comparison the left image shows the original 
visualization while the right image indicates this uncertainty by fading the horizons to white near 
to the salt diapir. 

Currently the TrglGeometryWithData class only handles data that are attached to the vertices 
and uses vertex colours to show these data, but it could easily be extended to also handle data 
that are attached to the faces (primitives, here the triangles). 

 

TrglGeometryWithDataGroup 

This class is derived from the Group class of Three.js and can be directly included in its standard 
scenegraph. It works as some kind of wrapper or container around the TrglGeometryWithData 
class – all function-calls should be directed to this class which will advance these calls to the 
TrglGeometryWithData class where necessary. When, for example, the glyphs should be shown, 
the corresponding function should be called on this class. It will then check if they can be shown 
directly or if they first need to be computed. It further keeps track of additional geometries, such 
as the envelopes and glyphs that have been described above.  
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3.2 Visualization of voxel data with uncertain scalar data 
This example shows how the voxel data sets which contain data for each voxel, for example an 
integer id that defines the class to which this voxel belongs (e.g. geological unit) or some physical 
attribute (e.g. porosity or permeability) and the corresponding uncertainty (e.g. probability or 
information entropy) can be visualized. The visualization is mainly based on two classes, the 
class VoxelGeometryWithData which is derived from THREE.Geometry and handles the data and 
the visualization using sections through the data set, and the class 
VoxelGeometryWithDataGroup which is derived from the Three.Group class and provides the 
interface to the main application. 

VoxelGeometryWithData 

This class reads the scalar data from a file in an xml based vtkStructuredPoints format (a format 
to describe voxel data from the Visualization Toolkit, Schroeder et al., 1997) and stores them in 
a 2D array. At this stage no difference is made between the attribute data themselves and the 
corresponding uncertainty data. Different functions have been implemented to obtain 
information on the data, such as attribute names, minimum and maximum values and the 
histogram for each attribute. 

In order to visualize the data, they are converted into unsigned byte format (Uint8, 8 bit) and 
stored in a 3D texture (basically a 3D image). If only the data value needs to be visualized with a 
1D colour table, a 3D texture with one component is used. When, additionally, the uncertainty 
has to be shown, using a 2D colour table, a 3D texture with two components is used (Luminance-
Alpha format). The 3D texture can be visualized by slicing sections that are made of geometric 
primitives (triangles) through the 3D texture (see Figure 10 for an example). Several functions 
are provided, which define either vertical sections that can be rotated around the z-axis and 
shifted along x and y axis, or horizontal slices that can be shifted along the z axis.  

Unfortunately Three.js does not support 3D texture coordinates and for this reason the actual 
visualization must be calculated in a shader, defined as VolumeSectionShader, using OpenGL 
shading language (see e.g. Rost, 2006). The texture coordinates are computed from the vertex 
coordinates on the fly within the vertex shader and then set as varying variable, so that they are 
interpolated for each pixel in image space that “sees” the current primitive. The texture with the 
data is accessed in the fragment shader, using the interpolated texture coordinate. Dependent 
of the data value (and the uncertainty in the case of a 2D colour table) a second texture 
coordinate is computed which points into the colour table as a 2D texture. For the resulting 
colour value the lighting calculations are done subsequently in the fragment shader on a per-
fragment basis. 

VoxelGeometryWithDataGroup 

This class is derived from the Group class of Three.js and can be directly included in its standard 
scenegraph. It works as some kind of wrapper or container around the TrglGeometryWithData 
class – all function-calls should be directed to this class, which will advance these calls to the 
VoxelGeometryWithData class where necessary. The material that is used by this class to render 
the geometries is a THREE.Shadermaterial that uses the uniform variables and textures from the 
corresponding VoxelGeometryWithData instance. Principally any geometry that has the vertex 
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coordinates defined in the same coordinate system as the VoxelGeometryWithData instance can 
be used to visualize the data on its surface. 

 

3.3 SceneViewer and global variables 
Several variables are defined globally to make them available from different parts of the 
implementation. Normally, in object oriented programming, these would likely be implemented 
using the Singleton design pattern (e.g. Gamma et al., 1995). 

• allGeoDataGroups: is a global variable that holds all the different geoscientific data objects, 
that are derived from THREE.Group, such as TrglGeometryWithDataGroup and 
VoxelGeometryWithDataGroup. The variable allGeoDataGroups itself is of type 
THREE.Group itself and is included in the scenegraph. Basically it constitutes the root of the 
geoscientific scene objects. 

• colorTableFactory: is a global variable of the class ColorTableFactory and is used to generate 
colour tables for the different attributes that are loaded with the geoscientific geometries. 
If no pre-defined colour table exists for the given attribute name, an instance with the 
standard colour table will be created and returned. 

• sceneViewer: is an instance of the class SceneViewer and encapsulates the 3D visualization 
canvas. It provides the functionality to steer the camera (e.g. view from top, view from east), 
to handle changes in the window size and to adjust the camera and scale the whole scene 
to get a global view.  

3.4 Data-loaders 
The data-loader classes implement the functionality to load the test data in order to showcase 
some of the suggested visualization methods from files or from the official data base.  

EGDILoader 

Within the EGDI 3D database, the vertices and the triangle indices that indicate which three of 
all the vertices form a triangle, are stored in dedicated places of the data base and are accessed 
from there using the object-id that is issued for each 3D object in the 3D database. In order to 
find these data there, the URL must be set first. It differs for the standard data sets which have 
no additional data on their vertices and for the experimental data sets that carry additional 
information, such as standard deviation and the probability that the surface exists at the vertices 
location. 

• Vertices for standard models: “https://geusegdi01.geus.dk/geom3d/data/nodes/” 
• Vertices for uncertain models: “https://geusegdi01.geus.dk/geom3d/data/probnodes/” 
• Indices for all models: “https://geusegdi01.geus.dk/geom3d/data/triangles/” 

These URLs must be handed to the EGDILoader before loading the model, using its member 
functions setEGDIPointUrl() and setEGDIIndexUrl(); 

Generally, loading the data is a two-step process. First the meta-data are loaded from the data 
base, given a general model ID that is unique for each model. They contain information about 
the type and name of the different objects, also called features, that belong to a model, the 
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colour with which they should be displayed and their geometry-ID under which the vertices and 
the indices can be retrieved from the EGDI 3D database. Subsequently the geometry for each 
feature (here the triangulated surface) is pulled from the data base, using the information and 
the geometry-ID. Then a new object of type TrglGeometryWithDataGroup that encapsulates the 
surface is created, and appended to all other data (allGeoDataGroups, see above). 

As things currently stand, the metadata in the EGDI 3D database do not carry information about 
additional variables for each vertex of a feature exist, such as standard deviation and the 
probability that it occurs at the vertices positions, and of which type they are. So currently this 
must be handled by the application in advance. When no additional data need to be loaded, 
then another function-call is used which loads the model in a standard way. When additional 
data are present, the function must be given the number of data per vertex and the names of 
the data, in order to later present it properly. Future versions of the EGDI 3D database need to 
solve this and to provide this information in the metadata, so that a universal loader can be 
written. 
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4 EXAMPLE DATA SETS 
In order to showcase the different visualization methods and in order to test and discuss them, 
example data are needed. For this reason we have created two example data sets. The first one, 
a 10x20 km pilot region in the German North Sea (Entenschnabel), has been taken from another 
project and augmented with uncertainty making some general assumptions instead of a detailed 
uncertainty assessment. This data set has been taken throughout the project, in order to 
generate example renderings, such as for Deliverable 4.1, the report on the state of the art in 
uncertainty visualization. The second example data set is the result of an assessment of 
uncertainty for the 3D depth model that has been generated from the cross border Dutch, 
German and Danish sector around the Entenschnabel within work package 3 of the 3DGEO-EU 
project. The uncertainty assessment for this model has been done at a later stage of the 3DGEO-
EU project and has therefore not been used to create illustrations for the reports. Both data sets 
are stored in the EGDI 3D database and together form Deliverable 4.4 of this 3DGEO-EU work 
package on the uncertainty in geomodels. Currently EGDI only stores triangle-meshes with 
additional attributes that represent scalar values. Additional example data sets that have been 
used throughout the project, such as lines and points with standard deviations given as 3x3 
matrices or voxel data sets, could not be stored in EGDI. For this reason, they have not been 
included here – but it can be assumed that they will be stored in EGDI in the future. 

4.1 Example data: 10x20 km Pilotregion Entenschnabel 
The small data set is based on the 3D geological model of the 10x20 km large pilot region in the 
German North Sea sector (see Zehner, 2018 for detailed information). The model consists of 16 
horizons, marking the base of the corresponding units, 43 faults and two salt-diapirs, called Berta 
and Bella and is shown in Figure 13. Further a visualization of a part of this model showing the 
uncertainty and using the javascript implementation described above is shown in Figure 14. 

 

 
Figure 13: 3D geological model from Zehner (2018) that has been used as example data set.  
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In reality, the construction of the original model did not involve an uncertainty assessment. For 
demonstration purposes, information on uncertainty was artificially generated and calculated 
by using general assumptions. For the horizons the uncertainty is assumed to be much higher in 
the vicinity of the salt diapirs, as has been shown in Deliverable 4.2 (Zehner et al., 2021) by 
statistically analyzing misties of crossing 2D seismic sections. Further the vicinity of faults is 
assumed to add some uncertainty and a small general increase of uncertainty with depth is 
assumed. The relative uncertainty is then multiplied by an assumed maximal standard deviation 
of 200m for the horizons to generate the standard deviation for each vertex. Further a variable 
pr_presence has been created that assumes that the probability for the horizon to be pictured 
on the right side of the fault or existing at this location outside of the salt diapir to fall from 1 at 
a distance of 150m (for faults) or 250m (for the flanks of the diapirs) to 0 at the position of the 
faults and diapirs (due to the exact position of the faults and the exact extension of the diapir to 
be unknown). 

 
Figure 14: Visualization of the geological model with uncertainty using the Javascript prototype 
that has been developed as part of the work package (embedded in a webpage). 

The uncertainty of the salt diapirs has been assumed to be mainly proportional to the steepness 
of the flanks, as the vertical walls of the diapir can usually not be imaged in seismics properly. 
The geometric standard deviation of the extension of the diapirs is assumed to vary between 
40m on the horizontal interfaces (e.g. top) and 200m on the vertical flanks. For the faults the 
geometric standard deviation has been assumed to be 100m. 

The model has been used as example data for visualizations using Paraview and for testing how 
a model could be stored in the EGDI 3D database and subsequently directly could be drawn from 
there into our web based prototype for uncertainty visualization. 
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4.2 Example data: Model of the Entenschnabel from WP3 
The original (certain) data represent an offshore cross border North Sea area between the 
Netherlands, Germany and Denmark, and are one of the results of work package 3 of the 3DGEO-
EU project. The modeling and harmonization of the horizons in the time domain is described in 
Deliverable 3.6 (Thöle et al., 2021), the time to depth conversion has been done based on the 
velocity model described in Deliverable 3.7 (Doornenbal et al., 2021) and the harmonized depth 
model, together with the report, constitutes Deliverable 3.8 (Thöle et al, 2021).  

These data have been used by TNO, Maryke den Dulk, to apply the workflow for uncertainty 
assessment as described by her in Section 3.2 of Deliverable 4.2 (Zehner et al., 2021). Due to 
data availability and time constraints during the project, the assessment could only be done for 
the Dutch and the German part of the model. The original model was given as 2.5D elevation 
grid with a high resolution. The data were converted to Skua-Gocad’s TSurf format and are given 
in two resolutions - a high resolution version that reflects the original resolution but results in a 
large number of vertices, and a low resolution version that has been generated in Skua-Gocad 
by resampling the surfaces while paying respect to their curvature. Both model versions carry 
two variables on the vertices: 

• z_stddev: This variable holds the standard deviation for the z-values. 
• z_stddev_is_known: This variable holds the information if the standard deviation has been 

estimated. If its value is 0 (false), uncertainty has not been assessed and the value for 
z_stddev is set to 0.0. If its value is 1 (true), the uncertainty has been assessed and the 
variable z_stddev holds the calculated value. 

Please note that this means that the whole Danish part of the model is given a standard 
deviation of 0.0 as it has not been assessed in this region (z_stddev_is_know is 0 / false).  

Table 1 lists the ASCII file names, their colour code and the name of the geological units to which 
the horizons constitute the base.  

 

Filename Colour Geological unit 

01_NU_V3_TSurf_***.ts  Upper North Sea Group 

02_N_V3_TSurf_***.ts  Lower and Middle North Sea Groups 

03_CK_V3_TSurf_***.ts  Chalk Group 

04_KN_V3_TSurf_***.ts  Rijnland Group 

05_S_V3_TSurf_***.ts  Schieland, Scruff and Niedersachsen Groups 

06_AT_V3_TSurf_***.ts  Altena Group 

07_TR_V3_TSurf_***.ts  Lower Germanic Triassic Group 

Table 1: File names, colour codes and the names of the base horizons / geological units for which 
the uncertainty has been assessed. The wildcards *** can either be highres for the high resolution 
model (original resolution) or lowres for the resampled version with lower resolution 
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Resampling the surfaces in order to provide the model in a form that uses fewer resources 
clearly has an effect on the distribution of the data, especially on the standard deviation, as the 
remeshing has been done by respecting curvature. This primarily makes a difference when 
looking at the detail, but leaves the overall trends and feature intact. See Figure 15 for a 
comparison. 

 
Figure 15: Effects on the spatial distribution due to remeshing the model with a lower resolution. 
Blue colours indicate low, and red colours indicate hight standard deviation. Top: close up to 
show the effects of resampling the mesh with the original resolution (left) to one with much lower 
resolution (right). As can be seen in the bottom of the figure these effects are hardly visible when 
looking from the distance at the whole model. The large blue area in the North indicates the 
Danish part of the model where the uncertainty has not been assessed. Therefore the standard 
deviation has been set to zero. 

Figure 16 further shows the visualization of the KN horizon using the prototype and the HSV 
colour model for 2D colour mapping, in order to show depth and uncertainty simultaneously. 
The Hue (fully saturated colour) indicates the depth, while the uncertainty is mapped to colour 
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saturation by fading the colour saturation in areas of high uncertainty (greyish areas). Due to 
the large regional extent, it does not make sense to indicate the standard deviation by using 
glyphs or by rendering confidence envelopes, as the size of the glyphs and the distance from 
envelope to mean horizon would be very small in comparison to the spatial extents. 

 

 
Figure 16: Visualization of the KN horizon using the Javascript prototype to display the horizon in 
a browser. Colour is mapped to elevation and its saturation is mapped to standard deviation. 
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