

Deliverable 1.1

Inventory Report

Authors and affiliation: Melanie Witthöft Hans Doornenbal [LBEG, TNO]

E-mail of lead author: Melanie.witthoeft@lbeg.niedersac hsen.de

Version: 19-12-2018

DOI: 10.48476/3DGEO-EU_WP1_InvRep

This report is part of a project that has received funding by the European Union's Horizon 2020 research and innovation programme under grant agreement number 731166.

Deliverable Data		
Deliverable number	D1.1	
Dissemination level	Public	
Deliverable name	Inventory rep	ort
Work package	WP1, Cenoz northern ons region	coic geothermal reservoirs in the hore Dutch-German cross border
Lead WP/Deliverable beneficiary	LBEG (Lower	Saxony, Germany)
Deliverable status		
Submitted (Author(s))	18/12/2018	Melanie Witthöft, Hans Doornenbal
Verified (WP leader)	18/12/2018	Melanie Witthöft
Approved (Project leader)	19/12/2018	Stefan Knopf

GENERAL INTRODUCTION

In WP1 of 3DGEO-EU Lower Saxony and the Netherlands are involved. Lower Saxony is represented by the Authority for Mining, Energy and Geology (Landesamt für Bergbau, Energie und Geologie, LBEG) and the Netherlands are represented by the Netherlands Organisation for Applied Scientific Research (TNO). Both institutions are experienced in three dimensional modeling of the subsurface.

In 3DGEO-EU both partners will work in a cross border pilot area (see Figure 1) on harmonization of existing 3D models and Cenozoic geothermal reservoir maps.

Figure 1: Overview of the pilot area: red box in the left picture marks the participating countries, the blue area in the right picture shows the cross border pilot area in the Netherlands and Lower Saxony (Eurostat, 2018).

This report (deliverable of task 1.1) is a state of the art inventory of existing 3d models (see chapter 1) and Cenozoic geothermal reservoir maps and their properties (see chapter 2) in Lower Saxony and the Netherlands.

This inventory will be the base for the following cross border tasks in this project:

- In task 1.2 LBEG and TNO strive to establish a consistent 3d model of the pilot area. Therefore we present in chapter 3 criteria for harmonization.
- Harmonized distribution, depth and thickness maps of Cenozoic geothermal reservoirs will be the result of task 1.3.
- Properties like porosity, permeability and thermal conductivity will be gathered and loaded into a database in task 1.4, which will be the base to create Cenozoic geothermal maps under task 1.5.
- In task 1.6 a harmonized map of the hydraulic barrier between fresh groundwater and the deep salt groundwater system is presented as a decision support tool for planners.

TABLE OF CONTENTS

1	EXISTI	ING 3D MODELS	4
	1.1	Involved countries	4
	1.2	Extent	5
	1.3	Input data	5
	1.4	Date of publication	6
	1.5	Model type	7
	1.6	Stratigraphical Nomenclature	7
	1.7	Modeled layers	10
	1.8	Faults	15
	1.9	Publications	16
	1.10	Modeling software	16
	1.11	Confidentiality and availability	16
	1.12	Output data (sort/type, format)	17
	1.13	Coordinate system	17
	1.14	Height reference system	17
2	EXIS	TING MAPS OF CENOZOIC RESERVOIR ROCKS	
_	2.1	Input data	
	2.2	Output data (sort/type, format)	
	2.3	Confidentiality and availability	20
2			21
3		WONIZATION	Z1
	5.1 2.2	Harmonizeu main Mesozoic stratigraphie units	21
	3.Z	Faulte	⊥∠ ⊃⊏
	5.5	FdUILS	25
4	LIST C	OF REFERENCES	26

1 EXISTING 3D MODELS

Our work is based on four 3D models: Geotektonischer Atlas 3D (GTA3D), Digitaal Geologisch Model diep (DGM-deep), Digitaal Geologisch Model Noord-Nederland (DGM-NNL) and Southern Permian Basin Atlas (SPBA). In this report the acronyms as mentioned in table 1, will be used.

Table 1: Overview of existing 3D models and used acronyms in this report.

3D models		
acronym	name	
GTA3D (LBEG)	Geotektonischer Atlas 3D	
DGM-deep V5.0 (TNO)	Digitaal Geologisch Model: DGM- diep	
DGM-NNL (TNO)	Digitaal Geologisch Model Noord-Nederland	
SPBA	Southern Permian Basin Atlas	

Elaboration on criteria for harmonization of 3D models requires the knowledge of differences between the datasets. The properties and characteristics of these models will be listed in this chapter mainly as tables to derive criteria which will be used for the harmonization (chapter 3).

1.1 Involved countries

The involved countries, who have worked on the four 3D models are listed in table 2.

Table 2: Overview of involved nations.

3D model	Involved countries
GTA3D	Lower Saxony (Germany)
DGM-deep V5.0	The Netherlands
DGM-NNL	The Netherlands
	United Kingdom, Belgium, The Netherlands, Denmark, Germany and
SPBA	Poland

1.2 Extent

The extent of each 3D model is shown in figure 2. GTA3D and DGM-deep V5.0 extend over the whole country area of Lower Saxony respectively the Netherlands. DGM-NNL extends over the northeastern part of the Netherlands (see Figure 2). Only SPBA is a crossborder model with more countries involved.

Figure 2: 1) Extent of GTA3D model (grey shadow) (LBEG, 2018), 2) Extent of DGM-deep V5.0 (blue border), 3) Extent of DGM NNL (blue border) and 4) Extent of SPBA model (blue border) (Doornenbal et al., 2010).

1.3 Input data

Table 3: Different input data of existing 3D models.

3D model	Input data
	14 depthmaps of the Tectonic Atlas of Northwest Germany and the
	German North Sea Sector (Baldschuhn et al., 2001); depth of Quaternary
	basis 1: 500 000 (NLfB, 1995); digital surface model; state of knowledge:
GTA3D	~ 2001
DGM-deep V5.0	seismic data and well data
DGM-NNL	3D seismic data and well data
SPBA	seismic data and well data

Database of the models is quite different at first glance. GTA3D is a model established on an older seismic and geological interpretation, executed before 1996. It is a model based on structural depth maps of the 'Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor' (Baldschuhn et al., 2001). These maps have been generated by interpretation of 2D seismic data and

Page 5 of 26

well information. 2D geological cross sections, thickness maps and paleotectonic maps complete these maps. Based on digitized structural maps, triangulated three dimensional surfaces were created to represent the base of the horizons (see Figure 3). For the other 3D models seismic data and well data was used as direct input data.

Figure 3: GTA3D – example of the modeling workflow of the Lower Cretaceous horizon, based on digitized maps (Bombien et al. 2012).

In GTA3D, data inconsistencies, caused by intersection of different structural maps in 3D model, have not been revised. Figure 4 shows an example of intersecting base surfaces. Due to 2-dimensional mapping of the input data, which was done in the 1980's and 1990's without the use of 3D modeling software, these inconsistencies mainly occur in areas of complex fault systems.

Figure 4: GTA3D - example of data inconsistencies; intersection of base surface of Middle Jurassic (blue) and base surface of Upper Jurassic+Wealden (green) (Helms 2018, unpublished).

1.4 Date of publication

It is necessary to record the date of publication. Table 4 lists the date of publication of the 3D models.

3D model	Date of publication
GTA3D	17.07.2012
DGM-deep V5.0	Q1 2019
DGM-NNL	Q1 2019
SPBA	June 2010

Table 4: Date of first publication.

Page 6 of 26

1.5 Model type

Table 5: Different modeltypes of existing 3D models.

3D model	Model type
GTA3D	regional, main lithostratigraphical intervals
DGM-deep V5.0	regional, main lithostratigraphical intervals
DGM-NNL	detailed, reservoir layers
SPBA	regional, main lithostratigraphical intervals

1.6 Stratigraphical Nomenclature

In general 3D models exist of lithostratigraphic layers which are described in Stratigraphical Nomenclatures (see table 6).

3D model	Stratigraphical Nomenclature
GTA3D	lithostratigraphic units (see Table 7)
DGM-deep V5.0	https://www.dinoloket.nl/nomenclator and see Figure 5
DGM-NNL	https://www.dinoloket.nl/nomenclator and see Figure 5
	Each of the participating geological surveys has published a
	lithostratigraphic nomenclature for their country: UK (Cameron et al.,
	1993; Johnson et al., 1994; Lott & Knox, 1994; Waters et al., 2007),
	Belgium (Bultynck & Dejonghe, 2002), the Netherlands (Van Adrichem
	Boogaert & Kouwe, 1993), Denmark (Michelson et al., 2003; Schiøler et
	al., 2005), Germany (STD 2002; Menning & Hendrich, 2005), and Poland
SPBA	(Wagner, 2008).

Table 6: Different Stratigraphical Nomenclatures of existing 3D models.

Table 7: Stratigraphic terms in northwestern part of Germany, Age in million years (Ma) modified after (Baldschuhn et al.,2001) based on (Menning, 1997).

Age	Epoch	Stratigraphic	Code	Stratigraphic Series or stage
of base	(german)	Unit (german)	(german)	(english)
1,8 Ma	Quartär	Quartär	(q)	Pleistocene-
				Holocene
	Neogen	Pliozän	(tpl)	Pliocene
24 Ma	(Jungtertiär)	Miozän	(tmi)	Miocene
		Oligozän	(tol)	Oligocene
	Paläogen	Eozän	(teo)	Eocene
	Alttertiär)	Oberpaläozän	(tpao)	Upper
				Paleocene
65 Ma		Dan	(td)	Danian
		Maastricht	(krma)	Maastrichtian
		Campan	(krca)	Campanian
	Oberkreide	Santon	(krsa)	Santonian
		Coniac	(krcc)	Coniacian
		Turon	(krt)	Turonian
99 Ma		Cenoman	(krc)	Cenomaian
continued				
on next				
page				

Page 7 of 26

Age	Epoch	Stratigraphic	Code	Stratigraphic Series or stage	
of base	(german)	Unit (german)	(german)	(english)	
		Alb	(krl)	Albian	
		Apt	(krp)	Aptian	
		Barreme	(krb)	Barremian	
	Unterkreide	Hauterive	(krh)	Hauterivian	
		Valangin	(krv)	Valanginian	
144 Ma		Berrias = Wealden	(Wd)	Berriasian	
		Serpulit	(joS)	Tithonian	
		Münder Mergel	(joM)	Tithonian	
		Eimbeckhäuser PK.	(joE)	Tithonian	
	Oberjura	Gigas-Schichten	(joG)	Tithonian	
	(Malm)	Kimmeridge	joKI)	Kimmeridgian	
	· · · ·	Korallenoolith	(joK)	Oxfordian	
159 Ma		Heersumer Sch.	(joH)	Oxfordian	
		Callovium	(imcl)	Callovian	
	Dogger	Bathonium	(imbt)	Bathonian	
	(Mittlerer Jura)	Baiocium	(imbi)	Baiocian	
180 Ma	()	Aalenium	(imal)	Aalenian	
		Toarcium	(jutc)	Toarcian	
	Lias	Pliensbachium	(iupl)	Pliensbachian	
	(Unterer Jura)	Sinemurium	(juși)	Sinemurian	
206 Ma	(enterer euro)	Hettangium	(jube)	Hettangian	
200 1114		Rhät	(ko)	Rhaetian	
		Steinmergelkeuper	(km4)	Norian	
		Oberer Ginskeuper	(km3)	Carnian	
	Keuper	Schilfsandstein	(km2)	Carnian	
	Reuper	Unterer Ginskeuner	(km1)	Ladinian	
231 Ma			(ku)	Ladinian	
201 1/10		Ob Muschelkalk	(mo)	Ladinian-Ansian	
	Muschelkalk	Mittl Muschelkalk	(mm)	Ansian	
240 Ma	Waserielkalk	Lint Muschelkalk	(mu)	Ansian	
240 1014	Ob Buntsandstein	Röt	(ind)	Ansian	
	Ob.Dunisandstein	Solling-Folge	(smS)	Olenekian	
	Mittl	Hardensen-Folge	(smH)	Olenekian	
	Buntsandstein	Detfuth-Folge	(smD)	Olenekian	
	Dunisanusien	Volpriebausen-Folge	(sm\/)	Olenekian	
		Ouickborn-Folge	(smΩ)	Olenekian	
	Lint	Bernburg-Folge	(sing)	Induan	
251 Ma	Buntsandstein	Calvörde-Folge	(SuC)	Induan	
201 1110	Buntouriustein	Mölln-7vklus	(300)	Changhsingian	
		Friesland-Zyklus	(27)	Changhsingian	
		Ohre-7vklue	(20)	Changhsingian	
	Zechstein	Aller-Zyklus	(23)	Changhsingian	
	LECHOLEIII	Loino-Zyklus	(24)	Wuchianingian	
		Staßfurt-Zyklus	(23)	Wuchiapingian	
258 Mo		Worra-7vklue	(22)	Wuchiapingian	
200 1010	Rotliegend	Oberrotliegend	(ro)	Artiskian-	
	Rollegend	Oberrolliegend	(10)	Wuchiapingian	
300 Ma		Unterrotliegend	(ru)	Gzhelian-	
		•		Artiskian	
		Stefan	(cst)	Kasimovian-	
	Oherkarhon	Weetfal	(CW)	Bashkirian-	
	Cocinaidon	**Collai	(000)	Kasimovian	
326,3 Ma		Namur	(cn)	Serpukhovian-	
252 0 Ma	Untorkorbon	Dinont	(cd)	Bashkirian	
555,0 IVIA	Unterkalbull	Dinant	(cu)	Serpukhovian	

Age (Ma)	System	Series	Stages	Lithostratigraphy according Van Adrichem Boogaert & Kouwe (1993 - 1997)	Tectonic phase
07	,	Quaternary	Pleistocene	Gelasian Piacenzian		reotonio pilase
10 -			Pliccene	Tortonian	Unner North See Group, MU	
-		Neogene	Miocene	Berrevellien Lenghien	opper North Sea Gloup – No	
20 -				Aquitanian		Savian
- 30 -	ZOIC		Oligocene	Chattian Rupelian	Middle North Sea Group – NM	
-	ENO			Priabonian	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Pyrenean
40 -	0	Paleogene	Eocene	Lutetian		
50 —		Ŭ		Ypresian	Lower North Sea Group – NL	
			Delesses	Thenetian		
			Paleocene	Danian	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Laramide
70 -				Maastrichtian		
80 -				Campanian		
-			Upper	Santonian	Chaik Group – CK	Sub-Hercynian
90 -				Turonian		
100-				Cenomanian		
110		Cretaceous		Albian	Rijnland Group – KN	
-						
120-			Lower	Aptian		Austrian
 130-				Barremian		
-				Hauterivian		
140-				Ryazanian		Late Kimmerian
150-	v			Portlandian Kimmeridgian	SL SG SK SI	
-	OZC		opper	Oxfordian		
160-	MESO			Callovian		
170-	~	Jurassic	Middle	Bajocian	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Mid-Kimmerian
180-				Toarcian		
			Lower	Pliensbachian	Altena Group – AT	
190-			Lonor	Sinemurian		
200-				Hettangian		
-				Kildetiali		Early Kimmerian
210-				Norian		,
220-			Upper		Lipper Germanic Trias Group – RN	
230-		Triassic		Ontring	opper dermanic mas croup – niv	
				Carman		
240-			Middle	Anisian		
250-			Lower	Olenekian	Lower Germanic Trias Group – RB	Hardegsen
-			Lopingian	-Changhalan Wuchiapingian	Zechstein Group – ZE	
260-			Guadalupian	Capitanian	Upper Kotliegend Group – RO	
270-			· · ·	Kungurian		
280-		Permian		Artinskian	Lower Rotilegend Group - RV	Saalian
_			Cisuralian			
290-				Sakmarian		
300-	SOC			Asselian	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-	EOZ			Westeballs		Asturian
310-	PAL		Silesian	westphalian	Limburg Group – DC	
320-				Namurian		
330-		Carboni-				Sudetian
		rerous		Visean		
340-			Dinantian		Carboniferous Limestone Group – CL	
350-				Tournaisian		
-				Journalstan		

Page 9 of 26

1.7 Modeled layers

Table 8: Different modeled layers of existing 3D models.

3D model	Modeled layers
GTA3D	15 layers (see Table 9 and Figure 6)
	NU, N, CK, KN, S, ATPO, AT, RN, RB, ZE, RO + 2 Carb.horizons (see Table
DGM-deep V5.0	10)
DGM-NNL	67 layers (see Table 10)
SPBA	regional, main lithostratigraphical intervals (see Figure 7 and Figure 8)

Table 9: 14 lithostratigrahic units published in GTA; in GTA3D Quaternary base was additionally modeled.

Stratigraphic Units Geotectonic Atlas NW-Germany	Acronym
Base deepest Middle Miocene (Reinbeck)(NN5) to highest Pliocene	03_tmim-tpl
Base deepest Lower Miocene (Vierlande) (NN1) to youngest Lower Miocene (Hemmoor) (NN4)	04_tmiu
Base Middle Oligocene (Rupel) (NP23) to youngest Upper Oligocene (Neochatt) (NP25)	05_tolm-tolo
Base Brussels Sand to Top Lower Oligocene	06_tolm-teoo
Base Upper Paleocene (Landen) (NP8) to youngest Lower Eocene (Lower Eocene 4) (NP13)	07_tpao-teou
Base Cenoman to highest Dan	08_kro
Base deepest marine Lower Cretaceous (Valangin) to highest Lower Cretaceous (Oberalb)	09_kru
Base deepest Upper Jurassic (Oxford) to "Wealden" (Berrias)	10_jo-Wd
Base highest Lias (Obertoarcium) to highest Dogger (Callovium)	11_jutco-jmclo
Base lowest Lias (Hettangium) to Upper Lias (Lower Toarcium, Posidonia Shale)	12_juhe-jutcu
Base deepest Keuper (Lettenkeuper) to Upper Keuper (Upper Rhaetian)	13_k
Base Upper Buntsandstein (Roetsalinar) to Upper Muschelkalk (Ceratitenschichten)	14_so-m
Base deepest Lower Buntsandstein (Calvoerde) to highest Middle Buntsandstein (Solling)	15_su-sm
Base deepest Zechstein (Kupferschiefer Werra Folge) (T1) to highest Zechstein (Moelln-Cycle) (z7) oder Broeckelschiefer	16_z

Geologische Einheiten	System/ Periode	Arathem/ Āra	Alter [Ma] (DSK 2002
Quartar ungegliedert	Quartar		1.8-0
Mittelmiozan bis Pliozan Untermiozan Rupel bis Oberoligozan Mitteloligozan bis Obereozan Oberpalaozan bis Untereozan	Tertiär	Känozoikum	16,5 - 1,8 23,8 - 16,5 32,5 - 23,8 49 - 32,5 58 - 49
Oberkreide Marine Unterkreide	Kreide	-	99 - 65 142 - 99
Oberjura und "Wealden"	Jura/Kreide		156,5 - 137
Mitteljura (Dogger) Unterjura (Lias)	Jura	Mesozoikum	178 - 156,5 200 - 178
Keuper Röt und Muschelkalk Unterer und Mittlerer Buntsandstein	Trias		235 - 200 244,5 - 235 251 - 244,5
Zechstein	Perm	Paläozoikum	258 - 251

Figure 6: General legend of geological units, age and colours used in 3dD model GTAD3D (LBEG, 2008).

Page 10 of 26

Table 10: Stratigraphic units and model layers of DGM-deep V5.0 and DGM-NNL (Ten Veen et.al., in prep).	

	Naaldwijk	Early	and We	rkendam Fo	rmation	
	Boxtel	Middle	Aall	burg Format	ion	
	Eem	Jurassic	SLE	EN FORMAT	ION (BAS	E AT)
	Drente		Upp	oer Keuper C	laystone	
0	Drachten		Dol	omitic Keup	er	
Quaternary	Urk Tynje		Red	l Keuper Cla	ystone	
	Peelo		Red	l Keuper Eva	porite	
	Urk		Mic	dle Keuper	Claystone	
	Appelscha		Ma	in Keuper Ev	aporite	
	Peize		Low	ver Keuper C	laystone	
Neegono	Maassluis		Upp	per Muschel	kalk	
Neogene	Oosterhout		Mic	ldle Musche	lkalk Mar	
	BREDA (BASE NU)		Mu	schelkalk Ev	aporite	
	Rupel Clay		Low	ver Muschel	kalk	
	VESSEM MEMBER		Upp	per Röt Clays	stone	
	ASSE MEMBER	Triassic	Upp	per Röt Evap	orite	
Dalaagana	BRUSSEL MEMBER		Inte	ermediate Ré	öt Claysto	ne
Fuleoyelle	IEPER MEMBER		Ma	in Röt Evapo	orite	
	Basal Dongen Tuffite		SOL RN)	LING CLAY	STONE	(BASE
	LANDEN CLAY (BASE N)		Bas	al Solling Sa	ndstone	
	Ommelanden Formation		Har	degsen Forr	nation	
Late	Plenus Marl		Det	furth Clayst	one	
Cretuceous	TEXEL FORMATION (BASE CK)		Low	ver Detfurth	Sandston	e
	Upper Holland Marl		Vol	priehausen (Clay-Siltst	one
	Middle Holland Claystone		Low San	ver dstone	Volprieh	ausen
Early	Lower Holland Marl		Rog	genstein		
Cretaceous	Vlieland Claystone I		MA	IN CLAYSTO	NE (BASE	RB)
	Friesland Member	Permiar	ZEC	HSTEIN GRO	OUP (BASI	E ZE)
	Vlieland Claystone II					
	BENTHEIM SANDSTONE (BASE KN)					
	Upper Coevorden					
	Middle Coevorden					
	Lower Coevorden					
	Serpulite Member					
Late Jurassic	Weiteveen Upper Marl					
	Weiteveen Upper Evaporite					
	Weiteveen Lower Marl					
	Weiteveen Lower Evaporite					
	WEITEVEEN BASAL CLASTICS (BASE S)					

ło.	Name of mapped lithostratigraphic horizon	Description	Approximate age (Ma)
1	Near base Tertiary	Top Danian or top of the Chalk Group	61
2	Base Upper Cretaceous	Base of the Chalk Group (base Cenomanian)	100
3	Near base Lower Cretaceous	Approximately near base Ryazanian; may correspond to an unconformity	140
4	Near base Upper Jurassic	This horizon corresponds to a level varying from the Callovian to the base of the Oxfordian.	162
5	Near base Middle Jurassic	This level corresponds to the top of the Lias Group (base West Sole Group and equivalents in the UK; top of the Posidonia Shale Formation in the Netherlands) and is a marked unconformity over much of the area	176
6	Near base Lower Jurassic	Base of the Lias Group. This level corresponds to the mudstone/ sandstone boundary in the upper part of the Rhaetian, which is often an unconformity	201
7	Near base Upper Triassic	This level corresponds to a change from clastic-dominated to limestone-dominated sediments. It is not mapped in the UK and Denmark	237
8	Near base Middle Triassic	Base of the Röt evaporites	245
9	Near base Lower Triassic	Base of the Buntsandstein	253
.0	Base Zechstein	The base-Kupferschiefer reflector is mostly indistinct or not present because of low impedance contrast. In general, the seismic reflector that has been used is a younger horizon: top basal anhydrite (Stassfurt series). An agreed thickness has been added to this marker to create the base-Zechstein map	258
1	Base upper Rotliegend	This level corresponds with the base of the upper Rotliegend clastics. In general, the horizon was created by combining the upper Rotliegend thickness map, based on well data, and the depth of the base-Zechstein horizon	265

Figure 7: Overview of the lithostratigraphic horizons mapped in the SPBA area. These horizons have been numbered from 1 to 11 and are indicated in Figure 8 (Doornenbal et al., 2010).

Age (Ma)	Era/ them	Peri syst	iod/ tem	Epoch/ series	Stages	United Kingdom	Belgium	The Netherlands	Denmark	Germany	Poland	pters
0-	era					Onshore North Sea		Onshore North Sea	North Sea Onshore	West East	North-west South-east	Ŝ
5-10-		Quat	ternary	Pleistocene Pliocene	Piacenzian Zanclean Messinian Tortonian	Nordland Group			Nordland Group			
15 20			Neo	Miocene	Langhian Burdigalian Aguitanian	Westray Group		Upper North Sea Group				
25 30 35	enozoic	Fertiary		Oligocene	Chattian Rupelian Prisbopian			Middle North Sea Group				12
40 45	U		aleogene	Eocene	Bartonian	Bracklesham Group		Lower North Sea Group	Hordaland Group			
50 55 60				Paleocene	Ypresian Thanetian Selandian	Group			Rogaland Group			
65					Danian Maastrichtian							'
75 80					Campanian			Chalk				
85 90				Upper	Santonian Coniacian Turonian	Chalk Group						
100 105		Creti	aceous		Cenomanian	Selborne Group					2	² 11
110 115 120				Lower	Aptian	Lower Greensand Group		Rijnland Group				
125 130 135					Barremian Hauterivian Valanginian	Wealden Group		Schieland Group				
145 150 155	oic			Upper	Ryazanian Volgian Kimmeridgian			Schieland/Scruff Group				,
160 165 170	Mesoz	Jura	ssic	Middle	Oxfordian Callovian Bathonian Bajocian							۱ 10
175 180 185					Toarcian						Kamienna 5	5
190 195				Lower	Sinemurian Hettangian	Lias Group		Altena Group			Group	5
205 210 215 220				Upper	Rhaetian	Mercia Mudstone Group Group		Upper Germanic Trias Group	? Keuper Formation	Keuper Group		
225 230 235		Trias	ssic		Carnian							9
240 245 250				Middle	Ladinian Anisian Olenekian	? Bacton Group		Muschelkalk Formation	?	Muschelkalk Group Buntsandstein Group	Buntsandstein Group	3
			Sabkh Playa Evapo Aeolia	a deposits deposits prites an deposits	Linduan	Fluvial-lacustrine depo Deltaic deposits Marine (fine-grained) o Marine (coarse-grained	deposits deposits	Marine depo Shallow mari Shelf carbon Bituminous d	sits (marls) ine sandy limestone ates :laystone	Volcanic and proxin Proterozoic baseme Coal Mapped lithostratio	nal volcaniclastic deposits ent graphic horizon	

Figure 8: Stratigraphical correlation chart as used for SPBA; red lines and numbers show the (seismically mapped and) modeled layers (Doornenbal et al., 2010).

1.8 Faults

Information and data about faults and fault systems have been treated differently in the 3D models (see Table 11).

3D model	Representation of faults
	no fault surfaces or correlation of fault traces were included; the vertical
	displacement on the stratigraphic horizons show indirectly the existence
GTA3D	of faults.
DGM-deep V5.0	Fault surfaces have been mapped in seismics and partly modeled in 3D
DGM-NNL	Fault surfaces have been mapped in seismics and modeled in detail in 3D
SPBA	Main fault traces were retrieved from existing depth maps

In GTA3D, faults are not shown as fault surfaces. Information about faults in original GTA maps (see Figure 9) were transferred into the model as vertical displacements within the stratigraphic horizons.

Figure 9: Detail of GTA map "base Lower Jurassic" showing fault traces and additional information (e.g., dip angle and dip direction and the fault shows a horizontal and vertical displacement) (e.g., red circle) of faults; modified after (Baldschuhn et al. 2001).

In the models DGM-deep and DGM-NNL faults have been mapped during the seismic interpretation. In the next step, the faults have been modelled in 3D by using the Petrel software. In the SPBA model the main faults have been retrieved from existing depth maps.

1.9 Publications

Table 12: Publication list.

3D model	Publications
	Bombien et al. (2012) Der Geotektonische Atlas von Niedersachsen und
	dem deutschen Nordseesektor als geologisches 3D-Modell. In:
	Geowissenschaftliche Mitteilungen : GMit / Berufsverband Deutscher
GTA3D	Geowissenschaftler 48 (2012), Seite 6-13.
	Kombrink, H., Doornenbal, J.C., Duin. E.J.T, den Dulk, M., van Gessel, S.F.,
	ten Veen, J.H. & Witmans, N. (2012) New insights into the geological
	structure of the Netherlands; results of a detailed mapping project.
DGM-deep V5.0	Netherlands Journal of Geoscience 91-4: 419-446.
	Ten Veen, J.H., Kruisselbrink, A.F., den Dulk, M. and Witmans, N., in
	prep. Digital Geological Model Noord Nederland (DGM-NNL), TNO
	report, xx pp.
DGM-NNL	
	Doornenbal, J.C. and Stevenson, A.G. (editors), 2010. Petroleum
	Geological Atlas of the Southern Permian Basin Area. EAGE Publications
SPBA	b.v. (Houten). ISBN 978-90-73781-61-0

1.10 Modeling software

Table 13: Used 3D modeling software for generating existing 3D models.

3D model	Modeling software
GTA3D	Paradigm Gocad
DGM-deep V5.0	Petrel
DGM-NNL	Petrel
SPBA	Petrel

Different modeling software was used. While Lower Saxony modeled with Paradigm Gocad, the Netherlands used Petrel software. GTA3D consists of triangulated surfaces (ts-files) and DGM-deep, DGM-NNL and SPBA were modeled as grids.

1.11 Confidentiality and availability

Table 14: Confidentiality of existing 3d models and information about data availability.

3D model	Confidendiality and availabililty
	public on http://nibis.lbeg.de/cardomap3/?TH=1410 as 3dpdf or
GTA3D	browser version
DGM-deep V5.0	public on www.nlog.nl and www.dinoloket.nl, Q1 2019
DGM-NNL	public, Q1 2019
SPBA	Atlas public via www.nlog.nl, GIS product (maps+databases) for sale

1.12 Output data (sort/type, format)

Table 15: Description of output data.

3D model	Output data
	3D pdf (scale 1: 100 000) or GST-browser version; Gocad-t-surf-Format;
	cross sections and artificial well information on
GTA3D	http://nibis.lbeg.de/cardomap3/
	twt-, isopach-, depth-, V0-maps in pdf, arc-grid and zmap-grid, see
DGM-deep V5.0	https://www.nlog.nl/en/dgm-deep-v4-onshore
DGM-NNL	twt-, isopach-, depth maps
SPBA	Atlas on paper and pdf; GIS-product on DVD

1.13 Coordinate system

3D model	Coordinate system			
	ETRS89 / UTM zone 32N (zE-N) (Europäisches Terrestrisches			
	Referenzsystem von 1989 / Universale Transversale Mercatorabbildung			
GTA3D	Zone 32N) (EPSG 4647)			
DGM-deep V5.0	Amersfoort/RD New, spheroid: Bessel 1841 (EPSG 28992)			
DGM-NNL	Amersfoort/RD New, spheroid: Bessel 1841 (EPSG 28992)			
SPBA	Lambert conformal conical (EPSG 5643)			

Table 16: Overview of coordinate system of existing 3D models.

1.14 Height reference system

Table 17: Overview of height reference system of existing 3D models

3D model	Height reference system
GTA3D	DE_DHHN92_NH
	onshore: Actueel Hoogtebestand Nederland v2 (AHN2) with reference
DGM-deep V5.0	level NAP (Nieuw Amsterdams Peil; offshore: msl (mid sea level)
	Actueel Hoogtebestand Nederland v2 (AHN2) with reference level NAP
DGM-NNL	(Nieuw Amsterdams Peil
SPBA	msl (mid sea level)

EXISTING MAPS OF CENOZOIC RESERVOIR ROCKS

In this chapter an inventory of existing maps of Cenozoic reservoir rocks of the study area is described.

In the Netherlands a public, web-based geographical information system "ThermoGIS V2.0" has been developed with the main goal of supporting companies and the government to develop geothermal energy in the Netherlands (see https://www.thermogis.nl/en). ThermoGIS provides depth, thickness, porosity and permeability maps of many potential aquifers in the Netherlands. Geothermal performance maps are calculated with the use of an integrated, stochastic, techno-economic performance module. The most important outputs of ThermoGIS are geothermal potential maps of the Netherlands that can be viewed in a map viewer. For our study area ThermoGIS provides two important aquifers i.e. Vessem Member (NMRFV) and the Brussels Sand Member (NLFFS), which are also geothermal reservoirs.

In Lower Saxony average thermal conductivity maps provide non-interpolated point information, which is based on well data. Avarage values per well are available for depths intervals from ground level to 40 m, 60 m, 80 m and 100 m depth. For our study area these maps show information mostly for quaternary deposits, which mostly consist of quaternary aquifers and in deeper parts of tertiary aquitards.

These existing maps will not be used in this project. The deliverable of task 1.5 will be geothermal maps for the pilot area based on our modeling work.

Main modeled Cenozoic layers such as top Neogene, base Neogene and base Paleogene from the existing models GTA3D, DGM-deep and DGM-NNL will be harmonized. Subsequently by using these layers as a geometrical reference together with the geometry (top, depth, thickness) from public wells the geometrical (top, base, thickness) maps of the geothermal reservoirs will be generated for the Cenozoic subsurface in the pilot area.

2.1 Input data

Table 18: different input data of existing maps

map	input data
	well information from ground levelup to 40m
	depth, assessment of thermal conductivity (after
Thermal conductivity for vertical heat exchangers	VDI (2010), LBEG measurements and Ad-Hoc AG
(reference depth to 40m)	Hydrogeologie (2008), groundwatersurface
	well information from ground levelup to 60m
	depth, assessment of thermal conductivity (after
Thermal conductivity for vertical heat exchangers	VDI (2010), LBEG measurements and Ad-Hoc AG
(reference depth to 60m)	Hydrogeologie (2008), groundwatersurface
	well information from ground levelup to 80m
	depth, assessment of thermal conductivity (after
Thermal conductivity for vertical heat exchangers	VDI (2010), LBEG measurements and Ad-Hoc AG
(reference depth to 80m)	Hydrogeologie (2008), groundwatersurface
	well information from ground levelup to 100m
	depth, assessment of thermal conductivity (after
Thermal conductivity for vertical heat exchangers	VDI (2010), LBEG measurements and Ad-Hoc AG
(reference depth to 100m)	Hydrogeologie (2008), groundwatersurface
	Some harmonized main modeled Cenozoic layers
	together with the geometry (top, depth,
ThermoGIS 2.0 - NLFFS – Brussels sand Member	thickness) from wells
	Some harmonized main modeled Cenozoic layers
	together with the geometry (top, depth,
ThermoGIS 2.0 – NMRFV – Vessem Member	thickness) from wells

2.2 Output data (sort/type, format)

Table 19: description of output data of existing maps

map	output data		
Thermal conductivity for vertical heat exchangers	point information with additional depth		
(reference depth 40m)	information		
Thermal conductivity for vertical heat exchangers	point information with additional depth		
(reference depth 60m)	information		
Thermal conductivity for vertical heat exchangers	point information with additional depth		
(reference depth 80m)	information		
Thermal conductivity for vertical heat exchangers	point information with additional depth		
(reference depth 100m)	information		
	Top, base, thickness, porosity and permeability		
ThermoGIS 2.0 - NLFFS – Brussels sand Member	maps as grid+pdf		
ThermoGIS 2.0 - NMRFV – Vessem Member	Top, base, thickness, porosity and permeability		

Page 19 of 26

maps as grid+pdf

2.3 Confidentiality and availability

Table 20: status of confidentiality and link to the output data

map	Confidentiality and availability			
Thermal conductivity for vertical heat exchangers				
(reference depth to 40m)	public under http://nibis.lbeg.de/cardomap3/			
Thermal conductivity for vertical heat exchangers				
(reference depth to 60m)	public under http://nibis.lbeg.de/cardomap3/			
Thermal conductivity for vertical heat exchangers				
(reference depth to 80m)	public under http://nibis.lbeg.de/cardomap3/			
Thermal conductivity for vertical heat exchangers				
(reference depth to 100m)	public under http://nibis.lbeg.de/cardomap3/			
	Public under https://www.thermogis.nl/en/map-			
ThermoGIS 2.0 - NLFFS – Brussels sand Member	viewer			
	Public under https://www.thermogis.nl/en/map-			
ThermoGIS 2.0 - NMRFV – Vessem Member	viewer			

HARMONIZATION

3

For compilation of existing 3D models well and seismic data have been used. The decision, which layers have been modeled was derived on base of the input data. Therfore seismostratigraphic or lithostratigraphic horizons may be the base for the different models. In January 2019 we start to strive the harmonization of existing 3D models to a consistent 3D model for several Mesozoic main intervals (chapter 3.1) and some Cenozic intervals (chapter 3.2). During this work we will examine for which of these four 3d models a harmonization is possible and in which range. Detailled inventory of modeled layers will be the basis for the following work. Realisation of harmonisation is only possible, if it is geological reasonable. Otherwise modeled layers are completely different ant not comparable or traceable in other models.

In chapter 1 the differences between the four 3D models have been described. For elaborating a harmonized 3D model it is important to agree first on a common coordinate system for our pilot area to prevent inaccuracy and mistakes in geographic position.

3.1 Harmonized main Mesozoic stratigraphic units

During the SPBA project the seismic interpreted main horizons in the different countries have been already compared, also for Germany and the Netherlands (GTA3D and DGM-deep, see Figure 8). For the Mesozoic a total of eight horizons have been mapped, from base Triassic to base Cenozoic (see Figure 11). For three horizons, i.e. near Base Upper Jurassic, near base Middle Jurassic and near Base Lower Jurassic, the seismic interpreted horizons were picked on different stratigraphic positions on both sides of the German-Dutch border (see Figure 8). For each of these three horizons we have to determine the difference in age and in depth, afterwards we have to decide how to solve the differences.

3.2 Harmonising Cenozoic stratigraphic units

GTA3D depicts the Cenozoic layers in more detail with six stratigraphic layers: see table 9. DGM-NNL depicts Cenozoic layers more in detail: see table 10. DGM-deep depicts two Cenozoic horizons: base Upper North Sea Group (near base Neogene) and base Lower North Sea Group (near base Paleogene). In Figure 10 the seismic mapped horizons for Cenozoic are indicated, which have been modelled in the GTA3D (Germany) and DGM-NNL (Northeast-Netherlands) models. From this figure we could conclude that the following four horizons were seismically mapped on approximately the same level in both models GTA3D and DGM-NNL:

- base Landen Clay Member (NLLFC = 07 tpao-teou),
- base Brussels Sand Member (NLFFS=06 tolm-teoo),
- base Rupel Formation (NMRF= 05 tolm-tolo) and
- base Quaternary.

Only for the seismically mapped base Upper North Sea Group (=NUBA) in DGM-deep or DGM-NNL it should be decided whether it will be possible to harmonise this level with "04 tmiu" or "03 tmim-tpl" in the GTA3D model. The five mentioned horizons above could be harmonized along the German-Dutch border, only on the Dutch side of the pilot area some horizons should still be seismically mapped in the area outside the DGM-NNL area. Subsequently by combining these main horizons as a geometrical reference together with the geometry (top, depth, thickness) from public wells the

geometrical maps (top, base, thickness) of the geothermal reservoirs will be generated for the Cenozoic (except Holocene) subsurface in the pilot area.

The geometrical maps of these geothermal reservoirs (aquifers) will be the base for the geothermal property maps, which will be created in Task 1.5.

Marine chalk / limestone facies 🛛 📉 Abundant ash layers

Figure 10: Tectonostratigrafic Chart for Cenozoic (modified after (Doornenbal and Stevenson, 2010)). The red line is the seismically mapped near base Cenozoic in the SPBA-project. Blue lines show the seismically mapped horizons of DGM-NNL (Rupel Formation consists of modeled layers: Rupel Clay and Vessem Member) and the green lines show the seismically mapped horizons of GTA3D.

Page 23 of 26

Age (Ma)	System	Series	Stages	Lithostratigraphy according Van Adrichem Boogaert & Kouwe (1993 - 1997)	Tectonic phase	GTA3D	DGM deep V5.0	SPBA
0	-	Quaternary	Pleistocene Pliccene	Gelasian Piscenzian Zanciean			Quartär		
10 -		Neogene		Tortonian Derravallian	Upper North Sea Group – NU		Aittelmiozän- Pliozä	n	
20 -		Noopono	Miocene	Langhian Burdigalian			Untermiozan	Base NU	
_	S		Oligocene	Aquitanian Chattian	Middle North Sea Group – NM	Savian	Unterniozan		
30 -	NOZO		oligocene	Rupelian Priabonian		Pyrenean Mit	Rupel- Oberoligozär teloligozän- Oberep	zän	
40 —	Ð	Dalaarana	F	Bartonian		.,			
		Paleogene	Focene	Veresian	Lower North Sea Group – NL				
			Delesson	Thenetian		Ob	erpaläozän-Untereo	zän Base NL	1
- 00			Paleocene	Danian Meestrichtige	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Laramide	orpana <u>ozari or</u> norop		
70 -				Maasurchuan					
80 -			Upper	Campanian	Chalk Group – CK				
- 90 -				Santonian Coniacian		Sub-Hercynian			
-				Cenomanian			Oberkreide	Base CK	2
100-		Cretaceous		Albian	Rijnland Group – KN				
110-									
- 120-			Lower	Aptian		Austrian			
120			Lower	Barremian					
-130				Hauterivian			Marina Unterkre	vido Base KN	з
140-				Ryazanian		Late Kimmerian	Marine Onter Kie		
150-	v		Upper	Portlandian Kimmeridgian	SL SG, SK, SL				
160-	ozo		оррог	Oxfordian			Oberjura und W <u>ealden</u>	Base S	4
	MES		Middle	Callovian Bathonian					
170-		Jurassic		Bajocian Aalenian	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Mid-Kimmerian	Mitteljura	Base ATPO	5
180-				Toarcian					
190-			Lower	Pliensbachian	Altena Group – AT				
-				Sinemurian Hettangian			Unterjura	Base AT	6
200-				Rhaetian		Fach Rimmanian			
210-				Norian	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Early Kimmerian			
220-			Upper	Nonan	Upper Cormonic Triac Croup - PN				
230-		Triassic		Carpian	opper Germanic mas Group – KN				
-				Ladinian			Keuper		7
240-			Middle	Anisian			Röt und Muschelkal	k Base RN	8
250-			Lower	Olenekian	Lower Germanic Trias Group – RB	Hardegsen Unt	+ Mittl. Buntsandste	in Base RB	9
260-			Lopingian	Wuchiapingian	Zechstein Group – ZE Upper Rotliegend Group – RO		Zechstein	Base ZE Base RO	10
270			Guadalupian	Wordian Roadian					
- 2/0		Permian		Kungurian	Lower Rotlingend				
280-			Cisuralian	Artinskian	0000	Saalian			
290 —				Sakmarian					
- 300-	S			Asselian	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
-	EOZ			Stephanian		Asturian			
310-	PAL		Silesian	westphalian	Limburg Group – DC				
320-				Namurian		Sudation			
		Carboni- ferous				Sudecian			
340-				Visean					
-			Dinantian		Carboniferous Limestone Group – CL				
350-				Tournaisian					

Figure 11: correlation of modelled layers for GTA3D (red lines), DGM deep (blue lines) and SPBA (green lines) with names of the modeled horizons(modified after (Kombrink et al., 2012))

3.3 Faults

As described in Chapter 1.8 the treatment of fault data also needs to be harmonized. Due to the absence of 3D fault surfaces in GTA3D it only might be possible to harmonize the main faults or fault systems, which have a sufficient horizontal length or a big vertical displacement (see Figure 12 and Figure 13).

Figure 12: few fault zones crossing the German-Dutch border (from DGM-NNL)

Figure 13: Depth maps of the base of the Upper North Sea Group and the base of the Lower Germanic Trias Group which clearly show that a few faults are crossing the German-Dutch border in the pilot area

4 LIST OF REFERENCES

- Baldschuhn, R., Binot, F., Fleig, S. & Kockel, F. (2001): Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor. – Geol. Jb., A 153: S. 95; Stuttgart (Schweizerbart).
- Baldschuhn, R. F. (1996). Geotektonischer Atlas von Nordwestdeutschland. 17 Teile, Kt., Taf. Hannover: BGR.
- Bombien et al. (2012) Der Geotektonische Atlas von Niedersachsen und dem deutschen Nordseesektor als geologisches 3D-Modell. In: Geowissenschaftliche Mitteilungen: GMit / Berufsverband Deutscher Geowissenschaftler.- 48 (2012), Seite 6-13.
- Doornenbal, J.C., Abbink, O.A., Duin, E.J.T., Dusar, M., Hoth, P., Jasionowski, M., Lott, G.K., Mathiesen, A., Papiernik, B., Peryt, T.M., Veldkamp, J.G. & Wirth, H., 2010. Introduction, stratigraphic framework and mapping. In: Doornenbal, J.C. and Stevenson, A.G. (Eds): Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v. (Houten): 1-9.
- Doornenbal, J.C. and Stevenson, A.G. (editors), 2010. Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v. (Houten). ISBN 978-90-73781-61-0
- Eurostat (2018). recalled 19. 10 2018 at <u>https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-</u> <u>statistical-units/countries#countries16</u>
- Helms, M (2018). The Geological 3D-Model for Lower Saxony. Presented at Workpackage Meeting 1 in Hannover; unpublished
- Ad-Hoc AG Hydrogeologie (2008). Sachstandsbericht für einen bundeseinheitlichen Produktkatalog zur wirtschaftlichen Anwendung oberflächennaher geothermischer Anlagen. recalled 05. 10 2018 at

http://www.infogeo.de/dokumente/download_pool/PKOG_Abschlussbericht_1.3_08-04-25.pdf

- Kombrink, H., Doornenbal, J. C., Duin, E. J., den Bulk, M., van Gessel, S., ten Veen, J. H., & Witmans, N. (2012). New insights into the geological structure of the Netherlands; results of a detailed mapping project. Netherlands Journal of Geosciences Geologie en Mijnbouw, 91-4, S. 419-446.
- LBEG (2008). Erläuterung zum Geotektonischen Atlas als 3D-Modell für Niedersachsen. recalled 04. 10 2018 at

http://nibis.lbeg.de/cardomap3/project/cm3/Erlaeuterungstexte/Erl%C3%A4uterung%20zu m%20GTA-3D.pdfLBEG. (2018). https://nibis.lbeg.de/cardomap3/. recalled 05. 10 2018 at https://nibis.lbeg.de/cardomap3/

- Menning, M. (1997): Geologische Zeitskala der Mark Brandenburg. 1 Bl., Geoforschungszentrum Potsdam NE-Deutschland, Brandenburg - - Altersbestimmungen -
- NLfB (1995). Karte der Lage der Quartärbasis in Niedersachsen und Bremen 1 : 500.000. –. Hannover. Ten Veen, J.H., Kruisselbrink, A.F., den Dulk, M. and Witmans, N., in prep. Digital Geological Model Noord Nederland (DGM-NNL), TNO report, xx pp.
- TNO (2018). DINOloket. recalled 04. 10 2018 at https://www.dinoloket.nl/table
- VDI (2010). Richtlinienreihe VDI 4640 "Thermische Nutzung des Untergrunds". Düsseldorf.