

3D Geomodeling for Europe *Project number: GeoE.171.005*

Deliverable 1.2

Documentation Report NLS3D: A harmonized 3D model of 10 main Cenozoic and Mesozoic horizons Authors and affiliation: Melanie Witthöft Sonja Breuer Hans Doornenbal Andreas Kruisselbrink

E-Mail of lead author: melanie.witthoeft@lbeg.niedersac hsen.de

Version: 26-10-2021

DOI: 10.48476/3DGEO-EU_WP1_DocRep

This report is part of a project that has received funding by the European Union's Horizon 2020 research and innovation programme under grant agreement number 731166.

Deliverable Data					
Deliverable number	D1.2				
Dissemination level	Public				
Deliverable name	NLS3D: A harmonized 3D model of 10 main Cenozoic and Mesozoic horizons				
Work package	WP1, Harmonization of Cenozoic and Mesozoic layers in the northern onshore Dutch-German cross border region for assessment of underground usage				
Lead WP/Deliverable beneficiary	LBEG (Lower	⁻ Saxony, Germany)			
Deliverable status					
Submitted (Author(s))	28/07/2020	Melanie Witthöft			
Verified (WP leader)	28/07/2020	Melanie Witthöft			
Approved (Project leader)	29/07/2020 Stefan Knopf				

GENERAL INTRODUCTION

In work package 1 (WP1) of 3DGEO-EU Lower Saxony and the Netherlands are involved. Lower Saxony is represented by the Authority for Mining, Energy and Geology (Landesamt für Bergbau, Energie und Geologie, LBEG) and the Netherlands are represented by the Netherlands Organisation for Applied Scientific Research-Geological Survey of the Netherlands (TNO). Both institutions are experienced in three dimensional modelling of the subsurface.

In task 1.2 the harmonization of existing 3D models along the border has been realized (see Figure 1).

Figure 1: Impressions of harmonization: top: view into the harmonized 3D model NLS3D; bottom: deviation of corresponding horizons; the red colour shows areas where the maximum of accepted deviation is exceeded and the green colour shows areas within the maximum deviation.

This report is a documentation of task 1.2 to provide all information for understanding the new harmonized model "NLS3D".

- metadata
- input data, corresponding horizons
- methodology of harmonization
- faults
- lessons learned

TABLE OF CONTENTS

1	NEW	3D MOD	DEL "NLS3D"	6
	1.1	Metad	data	6
	1.2	HARM	IONIZATION	7
		1.2.1	Input 3D models	7
		1.2.2	Remodelled horizons	8
		1.2.3	Overview of 10 harmonized horizons of NLS3D	9
		1.2.4	Seismic check of cross-border geologic structure	
		1.2.5	Methodology of harmonization	
		1.2.6	Detailed report of harmonization for corresponding horizons	15
	1.3	Involv	ed new modelled horizons	
		1.3.1	Base Miocene	
		1.3.2	Base Oligocene /Rupel Formation	
	1.4	Stratig	graphic chart of the cross border area	
	1.5	Faults		40
	1.6	Inters	ections of Horizons with Near Base Rupelian	40
2	LESSC	ONS LEA	RNED	
3	LIST C	OF REFE	RENCES	

INDEX OF FIGURES

INDEX OF TABLES

Table 1:	RGB colours for the ten horizons	7
Table 2:	Names of the 10 harmonized lithostratigraphic horizons of the new model NLS3D and th	ieir
correspondi	ng horizon names in the existing 3D models in the Netherlands (NL) and Lower Saxony (NI)	10
Table 3:	Documentation of deviation and harmonization of Near base Lower/Middle Miocene	16
Table 4:	Documentation of deviation and harmonization of Near base Rupelian	18
Table 5:	Documentation of deviation and harmonization of Near base Middle Eocene	20
Table 6:	Documentation of deviation and harmonization of Near base Cenozoic.	22
Table 7:	Documentation of deviation and harmonization of Base Upper Cretaceous	24
Table 8:	Documentation of deviation and harmonization of Near base Lower Cretaceous.	26
Table 9:	Documentation of deviation and harmonization of Near base Upper Jurassic	28
Table 10:	Documentation of deviation and harmonization of Near base Middle Jurassic.	30
Table 11:	Documentation of deviation and harmonization of Near base Lower Jurassic	31
Table 12:	Documentation of deviation and harmonization of Near base Middle Triassic	33
Table 13:	Documentation of deviation and harmonization of Near base Lower Triassic.	35

1 New 3D MODEL "NLS3D"

Comparison of one existing 3Dmodel in Lower Saxony (GTA3D) and two existing 3D models in the Netherlands (DGM deep 5.0 and DGM-NNL) lead to the conclusion, that a new harmonized 3D model "NLS3D" could be created which is consisting of 10 harmonized horizons with a Cenozoic/Mesozoic age. The name "NLS3D" is composed of the abbreviation for the Netherlands "NL" and the abbreviation for Lower Saxony "LS" and the indication of the dimensionality "3D" - NLS3D.

Table 2 documents the origin of data that has been used to derive the new harmonised horizons of the new model. The existing 3D models are containing more modelled horizons (see Inventory Report D1.1 of 3DGEO-EU; Witthöft et al., 2018). For "NLS3D" only corresponding horizons of the existing models on both sides of the border have been used.

1.1 METADATA

- **Name:** NLS3D harmonized geological 3D model of deeper underground along the national border between Lower Saxony and the Netherlands
- Data structure: Regular grids with a 200m x 200m cell size
- Coordinate system: EPSG:3034 ETRS89 / ETRS_LCC
- **Software:** Petrel[©] E&P Software platform by Schlumberger
- Editing status: done
- Date of publication: July 2021
- Contact for information:

Netherlands Organisation for Applied Scientific Research (TNO)
Geological Survey of the Netherlands
Visiting address: Princetonlaan 6, 3584CB
Utrecht, The Netherlands
Mailing address: P.O. Box 80015, 3508TA
Utrecht, The Netherlands
Tel: +31 888664256
Web: https://www.tno.nl/en/

Online availability: EGDI: <u>http://www.europe-geology.eu/</u>

LBEG: https://www.lbeg.niedersachsen.de/startseite/

TNO: <u>https://www.dinoloket.nl/</u> and <u>https://www.nlog.nl/en</u>

- Dissemination format: ASCII files
- Data format: multidimensional, digital representatives of objects (modelDigital)
- Topic: Geosciences (geoscientific information)
- Keywords INSPIRE: Geology
- **Keywords GeoERA:** governance, geo-referenced data, view service, coverage access service, geological model, cross-border, chronostratigraphic unit, earth science
- Project name: 3DGEO-EU
- Spatial scope: European
- Limitations on public access: CC
- Geometry type: Bodies (solid)
- Height system: NAP and NHN
- Reference level: dataset, model
- Languages: English

RGB colours

Table 1	RGB colours for the ten horizons
Table 1.	

Horizon	R	G	В
NLS3D 01 Near base Lower Mid Miocene	215	180	20
NLS3D 02 Near base Rupelian	245	224	173
NLS3D 03 Near base Middle Eocene	244	176	132
NLS3D 04 Near base Cenozoic	204	102	51
NLS3D 05 Base Upper Cretaceous	50	150	0
NLS3D 06 Near base Lower Cretaceous	70	110	0
NLS3D 07 Near base Upper Jurassic	51	204	204
NLS3D 08 Near base Lower Jurassic	0	130	210
NLS3D 09 Near base Middle Triassic	140	50	255
NLS3D 10 Near base Lower Triassic	230	90	15

1.2 **HARMONIZATION**

At the beginning of the project with the comparison of the already existing 3D models it became clear that despite a different method for 3D model creation, the results were similar and harmonizable. Especially the large geological structures were visible on both sides of the border and could be correlated. This made it possible to harmonize the models.

It also became clear that there will be areas that could not be harmonized. E.g. because the input data density in the original models was too low in some areas, different reflectors were picked in the interpretation of the 2D seismic data, or that the geological concept for the formation of the structures was different, etc.

In order to maintain the idea of pure harmonisation, it was decided to preserve these discrepancies and not to re-model these regions. Therefore, it was not possible to harmonize the faults of the models without reinterpreting the data (see chapter 1.5).

1.2.1 INPUT **3D** MODELS

For the harmonization of the cross-border lithostratigraphic horizons, depth grids from three models have been used:

- GTA3D (DE)
- DGM-Deep (NL)
- DGM-Northern Netherlands (DGM-NNL) (NL)
- Remodelled horizons (Near Base Rupelian, Near Base Lower/Middle Miocene)

The input models and their horizons were presented and discussed in detail in the Inventory Report (Witthöft et al., 2018). The Inventory Report can be downloaded from the homepage of the GeoERA project (https://geoera.eu/3DGEO-files/3DGEO-EU-D1.1-Inventory-report.pdf).

1.2.2 **REMODELLED HORIZONS**

One of the deliverables to be delivered in this project by the LBEG are 2 newly modelled horizons: Near Base Lower/Middle Miocene and Base Rupel Formation (FM). Remodelling in the southern part of the project area (see red rectangle in Figure 2) has been carried out in a different way and the data were used for harmonization. The improvement in quality of the remodelling and the differences to the GTA3D horizons can be read in chapter 1.3.

Figure 2: Remodelling of Near Base Lower/Middle Miocene and Base Rupel FM in Lower Saxony. The red rectangle shows the area that was remodelled with SubsurfaceViewer.

For the remodelling of the southern part a different approach was chosen than for the creation of the GTA3D. The remodelling is mainly based on drillings and linked cross-sections.

Approximately 4000 boreholes were used for processing, of which about 1500 reach deeper than the base of Cenozoic. The remaining boreholes are hydrogeological, shallow geothermal and geoengineering boreholes, most of which do not reach Neogene/Paleogene strata. Most of these wells were correlated via linked cross-sections. A total of 136 cross-sections were made. In addition to the two horizons, the main faults of the area were remodelled based on the GTA structural. The software SubsurfaceViewer (R) MX Version 7.2.14 was used for this work.

For the remaining area Base Rupel FM was taken from TUNB model (BGR 2021) and Near Base Lower/Middle Miocene were remodelled based on wells, structural information and 2D seismic in GOCAD.

1.2.3 OVERVIEW OF 10 HARMONIZED HORIZONS OF NLS3D

The 3D model NLS3D is composed of 10 lithostratigraphic horizons. Detailed description of names, a description, approximate age, corresponding input horizons and the source 3D models is given in Table 2. For the 4 cenozoic layers a detailed description is given in Figure 3. This figure shows stratigraphic positions of harmonized input layers for onshore area (NL) and NW Germany.

Figure 3: Tectonostratigraphic chart for Cenozoic (modified after (Doornenbal and Stevenson, 2010)). The Blue lines show the input horizons of the Netherlands. Green lines show input horizons of Lower Saxony.

*	**	
*	* *	
,	*	

Remark	remapped in Lower Saxony	remapped in Lower Saxony					seismic interpreted horizons were picked on different stratigraphic positions	seismic interpreted horizons were picked on different stratigraphic positions. This horizon was not incorporated into the NLS3D model due to too big differences at the border	seismic interpreted horizons were picked on different stratigraphic positions			D models in the Netherlands -tolu
3D model source DE	remodelling	remodelling	GTA3D	GTA3D	GTA3D	GTA3D	GTA3D	GTA3D	GTA3D	GTA3D	GTA3D	he existing 3
3D model source NL	DGM deep 5.0	DGM-NNL	DGM-NNL	DGM deep 5.0	DGM deep 5.0	DGM deep 5.0	DGM deep 5.0	DGM deep 5.0	DGM deep 5.0	DGM deep 5.0	DGM deep 5.0	izon names in t ents stratigraph
German code	Near base Lower/Middle Miocene	Base Rupel	06 tolm-teoo (teom-tolu)*	07 tpao-teou	08 kro (Cenoman - Danian)	09 kru (marine L. Cret Oberalb)	10 jo-Wd (Oxford - Wealden)	11 jutco-jmclo (U. Toarc - highest Dogger)	12 juhe-jutcu (Hettangium - L. Toarc)	14 so-m (U. Buntsandstein - U. Muschelkalk)	15 su-sm (Lower - highest M. Buntsandstein)	heir corresponding hor ented, this layer repres
NL code	Base NUBA - Breda Formation	Base NMRF - Rupel Formation	Base NLFSS - Brussels Sand Member	Base N - North Sea Supergroup = base NLLFC-Landen Clay Member	Base CK - Chalk Group	Base KN - Rijnland Group	Base S - Upper Jurassic groups	Base ATPO - Posidonia Shale Fm	Base AT - Altena Group	Base RN - Upper Germanic Trias Group	Base RB - Lower Germanic Trias Group	new model NLS3D and t ic units which are repres
App. age (Ma)	18	32	51	62	101	140	164	176	201	247	253	of the tigraphi
Description	Early Miocene Unconformity-EMU (NL) Near base Lower/Middle Miocene (NI)	Base Boom (base clay layer) in Rupel Formation (NL) and Base Rupel Formation (NI)	Base Brussels Sand	Top Danian or top of the Chalk Group	Base of the Chalk Group (base Cenomanian)	Approximately near base Ryazanian; may correspond to an unconformity	This horizon corresponds to a level varying from the Callovian to the base of the Oxfordian.	This level corresponds to the top of the Lias Group (base West Sole Group and equivalents in the UK; top of the Posidonia Shale Formation in the Netherlands) and is a marked unconformity over much of the area	Base of the Lias Group. This level corresponds to the mudstone/ sandstone boundary in the upper part of the Rhaetian, which is often an unconformity	Base of the Röt evaporites	Base of the Buntsandstein	 I0 harmonized lithostratigraphic horizons y (NI). * name is not correct according to the stra
Name of the harmonized lithostratigraphic	Near Base Lower/Middle Miocene	Near Base Rupelian	Near Base Middle Eocene	Near Base Cenozoic	Base Upper Cretaceous	Near Base Lower Cretaceous	Near Base Upper Jurassic	Near Base Middle Jurassic	Near Base Lower Jurassic	Near Base Middle Triassic	Near Base Lower Triassic	2: Names of th and Lower Saxon
ę	-	0	m	4	വ	o	2	1	ω	თ	10	Table (NL)

1.2.4 SEISMIC CHECK OF CROSS-BORDER GEOLOGIC STRUCTURE

At several points along the border, the Dutch and German models are not in agreement. In order to assess the geological structure and make a decision about the feasibility of harmonization at these points, seismic lines on both sides of the border have been compared (see Figure 4).

Figure 4: Overview of the three sites of seismic checks, based on deviation along the border; shown for horizon Base CK-Chalk Group and Base 08 kro.

The reason why the model grids might differ at the border in terms of geologic structure could indicate whether or not an area is suitable for harmonization. Three areas were tested for geologic structure with different results.

The first site (Figure 4), in the northern part of area, shows inconsistency in terms of salt structures and faults (Figure 5). The structures are present in both grids but they are misaligned; on the German side the structures are skewed relative to the location of the structures on the Dutch side.

However, according to both Dutch and German seismic lines and surveys, both the Dutch and German grids are conformable to the seismic data. The difference between both grids remains unexplained and harmonization of this area is therefore not feasible.

Figure 5: Salt structures in the northern part of the project Figure 6: A ridge-like salt structure on the west side of the area (site 1).

border (site 2).

The second site (Figure 4) is a ridge-like salt structure on the west side of the border (Figure 6). This structure may have a side branch that continues into Germany. The Dutch Blijham 3D seismic survey (L3NAM1994C) covers a small part of the German border area. According to this seismic survey, it appears that there is no significant salt structure on the German side. This has been confirmed by checking German seismic lines. It is therefore possible to harmonize this part, despite the large difference between the grids at this location, by letting the Dutch grid prevail above the German grid in this area.

The third site (Figure 4) shows on the Dutch side the salt ridge, which is characterized by a collapsing structure in the Mesozoic overburden (Figure 7). This structure can clearly be seen on perpendicular lines of the Blijham 3D seismic survey (L3NAM1994C). This collapsing structure is not present in the German grids. A check of a seismic line on the German side of the border confirmed that there is no collapse of the salt structure in that area. However, the faults associated with the collapsing structure are observed. Since the transition between the collapsed and the non-collapsed salt structure is not observed, this area cannot be harmonized.

Figure 7: Collapsing structure on the Dutch side of the border (site 3).

1.2.5 METHODOLOGY OF HARMONIZATION

For each corresponding horizon, the depth differences between the two horizons along the border have been calculated (ΔZ). This has been done by extrapolating the grids with two grid-cells and calculating the difference between the overlapping cells, resulting a difference grid (Figure 9). The difference grid is subsequently divided by the average depth of the corresponding Dutch and German grids. The average depth is given by:

$$Z_{average} = Z_{NL} - \frac{Z_{DE} - Z_{NL}}{2}$$

For each stratigraphic horizons a fixed deviation percentage (grid dev %) is determined that would serve as a harmonization threshold (see chapter 1.2.6). The decision to harmonize an area is determined by whether or not this grid specific fixed deviation percentage is exceeded by the calculated deviation percentage of an area (*calculated dev %*), given by:

calculated dev % =
$$\frac{\Delta Z}{Z_{average}}$$

Figure 8: Calculation of percentage of deviation between corresponding horizons.

Corresponding grids will not be harmonized in areas for which the deviation percentage exceeds the horizon-specific deviation percentage.

 $Harmonize \Leftrightarrow calculated \ dev \ \% < grid \ dev \ \%$

Figure 9: Difference, average depth (m) and exceeded deviation percentage (%?) maps for a portion of the base Chalk Group.

1.2.6 DETAILED REPORT OF HARMONIZATION FOR CORRESPONDING HORIZONS

The following tables show the results of the harmonization. For each harmonized horizon, the new name will be indicated and the horizons of which it is composed. Then follows the illustration of a strip of the new harmonized horizon along the border - the colour coding shows the depth of the horizon. Black line traces the national border, white areas in close vicinity may indicate areas where, based on our assumptions, harmonization should not take place.

The following column shows the selected percentage of deviation (grid deviation (%)), which defines the section of the areas to be harmonized.

The next column compares three different percentage values of the deviation, areas with exceeded percentage of deviation are represented in red, green areas fall below percentage of deviation. This makes it easier to understand that the percentages for grid deviation were not chosen arbitrarily, but that exactly the value was chosen which makes the largest area of the area harmonizable without making the percentage of the deviation too large. Often a higher percentage of deviation has no effective benefit on the extension of the area to be harmonized.

The next part shows on the one hand the histogram of depth difference of the input models and on the other hand the histogram deviation distribution. The black bars show the selected percentage range of the deviation in decimal numbers.

This is followed by a description for the corresponding horizon of why the deviation occurs in this area. This can be due to different causes or combinations of causes: e.g. differences in velocity models, differences in the way the seismic horizons were picked, dipping of the horizons, etc. The main deviations of the horizons can be seen at the salt structures and fault systems, perhaps the faults and subsurface structures on both sides of the border are modelled differently.

Table 3: Documentation of	deviation and harmonization of Near base Lower/Middle Miocene.
Lithostratigraphic	Near base Lower/Middle Miocene
horizon	
Corresponding	Base NUBA - Breda Formation (DGM deep 5.0) and remodelled Near
horizons from	base Lower/Middle Miocene
existing models	
New harmonized	
horizon	
	Elevation depth [m]
	50.00
	-150.00
	-300.00
	-450.00
	-500.00
grid deviation [%]	26%

Histogram Possible reasons different lithostratigraphic classification, different geological models different lithostratigraphic classification, different geological models	Considered	NU - 03 mittelmiozan bis pliozan
Possible reasons different lithostratigraphic classification, different geological models	deviations	18% deviation 22% deviation 26% deviation
Histogram 280 - 240 - 200 - 140 - 120 - 40 - 40 - 40 - 80 - 120 - 190 - 200 - 240 - 2	deviations	
Histogram Histogram Possible reasons for doviation of the stratigraphic classification, different geological models		
Possible reasons for deviations	Histogram	Depth of NL Grid - Depth of DE Grid -280 -240 -200 -160 -120 -80 -40 0 40 80 120 160 200 240 280
Possible reasons for deviations of deviation		
Possible reasons different lithostratigraphic classification, different geological models		Distribution of deviation
for deviations	Possible reasons	different lithostratigraphic classification, different geological models
	for deviations	

Table 4: Documentation	of deviation and harmonization of Near base Rupelian.
Lithostratigraphic	Near base Rupelian
horizon	
Corresponding	Base NMRF - Rupel Formation (DGM-NNL) and remodelled Base Rupel
horizons from	FM
existing models	
New harmonized	
horizon	
	Elevation depth [m]
	-400.00
	600.00
	800.00

able 5: Documentation of deviation and harmonization of Near base Middle Eocene.			
Lithostratigraphic	Near base Middle Eocene		
horizon			
Corresponding	Base NLFSS – Brussels Sand Member (DGM-NNL) and 06 tolm-teoo		
horizons from	(teom-tolu) (GTA3D)		
existing models			
New harmonized			
horizon			
	Elevation depth [m		
	100.00		
	200.00		
	400.00		
	-600.00		
	-700.00		
	-800.00		
	-900.00		
	1000.00		
	\-+-		

Table 6: Documentation of c	leviation and harmonization of Near base Cenozoic.
Lithostratigraphic	Near base Cenozoic
horizon	
Corresponding	Base N - North Sea Supergroup
horizons from	= base NLLFC- Landen Clay Member (DGM-deep 5.0) and 07_tpao-teou
existing models	(GTA-3D)
New harmonized	
existing models New harmonized horizon	(GTA-3D)

Grid deviation [%]	13%		
Considered	10% deviation	13% deviation	16% deviation
deviations			
Histogram	280 -240 -200 -160 -120 Depth of NL Grid - Depth of DI -280 -240 -200 -160 -120 -280 -240 -200 -160 -120 0 -160 -120 Distribution of deviation	-80 40 0 40 80 E Grid -80 40 0 40 80 E Grid -80 40 0 40 80 Depth difference in meters -80 0, 20 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0	120 160 200 240 280 120 160 200 240 280 0 18 0 24 0 3 0 36 0 42 0 48 0 18 0 24 0 3 0 36 0 42 0 48 0 18 0 24 0 3 0 36 0 42 0 48
Possible reasons for	different way to model fai	ults and subsurface struct	ures
deviations			

Table 7: Documentation of c	leviation and harmonization of Base Upper Cretaceous.
Lithostratigraphic	Base Upper Cretaceous
horizon	
Corresponding	Base CK - Chalk Group (DGM-deep 5.0) and 08_kro (GTA-3D)
horizons from	
existing models	
New harmonized	
horizon	
	Elevation double for
	-200.00
	-800.00
	-1200.00 -1400.00
	-1600.00 -1800.00
	-2000.00
	-2400.00
	-2800.00
	-3200.00

Grid deviation [%]	19%		
Considered	10% deviation	19% deviation	30% deviation
deviations		E	
Histogram	-280 -240 -200 -160 -120 Depth of NL Grid - Depth of DE	-90 40 0 40 80 E Grid -80 40 0 40 80 -90 40 0 40 80 Depth difference in meters -10 0,12 0,06 0 0,12	120 160 200 240 280 120 160 200 240 280 0.18 0.24 0.3 0.36 0.42 0.48 0.18 0.24 0.3 0.36 0.42 0.48
Possible reasons for	different way to model fau	Ilts and subsurface struct	ures

Table 8: Documentation of o	deviation and harmonization of Near base Lower Cretaceous.
Lithostratigraphic	Near base Lower Cretaceous
horizon	
Corresponding	Base KN - Rijnland Group (DGM-deep 5.0) and 09_kru (GTA-3D)
horizons from	
existing models	
New harmonized	
horizon	
	Elevation depth [m
	-200.00
	-400.00
	-1000.00
	1200.00
	-1600.00
	-1800.00
	-2400.00
	-2600.00

Grid deviation [%]	15%		
Considered	5% deviation	10% deviation	15% deviation
deviations			
		() (((
		م ح	
	~~~	~~~	~~~
Histogram	-280 -240 -200 -160 -120	-80 -40 0 40 80	120 160 200 240 280
	Depth of NL Grid - Depth of Di		
			-
	-280 -240 -200 -160 -120	-80 -40 0 40 80	120 160 200 240 280
	-0.48 -0.42 -0.36 -0.3 -0.24	-0.18 -0.12 -0.06 0 0.06 0.12	0.18 0.24 0.3 0.36 0.42 0.48
	<b>Distribution of deviation</b>		
	40		
	2 00		
	500		
	-0.48 -0.42 -0.36 -0.3 -0.24	-0.18 -0.12 -0.06 0 0.06 0.12	0.18 0.24 0.3 0.36 0.42 0.48
Possible reasons	different way to model fau	ults and subsurface structu	res
tor deviations			
	1		





Table 9: Documentation of deviation and harmonization of Near base Upper Jurassic.				
Lithostratigraphic	Near base Upper Jurassic			
horizon				
Corresponding	Base S - Upper Jurassic groups (DGM-deep 5.0) and 10_jo-Wd (GTA3D)			
horizons from				
existing models				
New harmonized				
horizon				
	i i			
	Elevation depth [m			
	-600.00			
	-800.00			
	-1000.00			
	-1400.00			
	-200.00			





Grid deviation [%]	10%			
Considered	5% deviation	10% deviation	15% deviation	
deviations				
	1	1	1	
	ſ	ſ	f f	
	m	mand	and	
		, -	, -	
			<b>-</b> (	
Histogram	-280 -240 -200 -160 -120	-80 -40 0 40 80		
	-280 -240 -200 -160 -120	-80 -40 0 40 80 Depth difference in meters		
	-0.48 -0.42 -0.36 -0.3 -0.24	-0.18 -0.12 -0.06 0 0.06 0.12	0.18 0.24 0.3 0.36 0.42 0.48	
	Bistribution of deviation		100	
	120		120	
	2 08		80	
Possible reasons for	different way to model fau	Its and subsurface structu	res	
deviations				





Lithostratigraphic	Near base Middle Jurassic (distribution map)		
horizon			
Corresponding	Base ATPO – Posidonia Shale FM (DGM-deep 5.0) and 11 jutco-imclo		
horizons from	(GTA3D)		
existing models			
Corresponding	N .		
horizons			
	}		
	_		
	٢		
	5		
	Elevation depth [m]		
	500		
	1500		
	-2500		
	) 🔽 📕		
	•3000		
Remarks	Due to too big differences of the Dutch and the German horizons along the		
	border, we decided not to incorporate the horizon in the new NLS3D model.		





Table 11: Documentation of o	deviation and harmonization of Near base Lower Jurassic.
Lithostratigraphic	Near base Lower Jurassic
horizon	
Corresponding	Base AT - Altena Group (DGM-deep 5.0) and 12_juhe-jutcu (GTA3D)
horizons from	
existing models	
New harmonized	
horizon	
	j j j
	j 💊 N
	Elevation depth [m
	-400.00
	800.00
	1200.00
	-1600.00
	-2800.00





Grid deviation [%]	10%			
Considered	5% deviation	10% deviation	20% deviation	
deviations				
Histogram	-280 -240 -200 -160 -120 Depth of NL Grid - Depth of DE	-80 -40 0 40 80		
	048 042 036 03 024 0 Distribution of deviation	218 -0.12 -0.06 0 0.06 0.12		
Possible reasons for deviations	different way to model fau	lts and subsurface structu	ires	





Table 12: Documentation	of deviation and harmonization of Near base Middle Triassic.
Lithostratigraphic	Near base Middle Triassic
horizon	
Corresponding	Base RN - Upper Germanic Trias Group (DGM-deep 5.0) and 14_so-m
horizons from	(GTA3D)
existing models	
New harmonized	
horizon	
	Elevation depth [m
	-1000.00
	-1200.00
	-1600.00
	-2000.00
	-2400.00
	-3200.00 -3400.00
	-3600.00 -3800.00
	-4400.00











Table 13: Documentation	of deviation and harmonization of Near base Lower Triassic.
Lithostratigraphic	Near base Lower Triassic
horizon	
Corresponding	Base RB - Lower Germanic Triassic Group (DGM-deep 5.0) and 15_su-sm
horizons from	(GTA3D)
existing models	
New harmonized	
existing models New harmonized horizon	





Grid deviation	16%		
Considered	5% deviation	16% deviation	20% deviation
deviations			
Histogram	280 -240 -200 -160 -120 Depth of NL Grid - Depth of DI -280 -240 -200 -160 -120 048 042 036 03 024 Distribution of deviation	-80 -40 0 40 80 <b>E Grid</b> -80 -40 0 40 80 <b>E Grid</b> -80 -40 0 40 80 -80 -40 0 40 80 Depth difference in meters -0.16 -0.12 -0.06 0 0.06 0.12	
Possible reasons for deviations	In the north the models d in the velocity model, false	o not fit very well - proble e seismic horizon picked	matic salt tectonics, differences





## 1.3 INVOLVED NEW MODELLED HORIZONS

On the German side, the Near base Lower/Middle Miocene and the Base Rupel FM were remodelled (see chapter 1.2.2). The newly modelled horizons have been integrated into the harmonization. In the following two sections it will be shown exemplary how the two models differ on the German side and which one has been included in the harmonization.

#### 1.3.1 BASE MIOCENE

During the remodelling of the "Nordhorn area" it became clear that only the Middle Miocene occurs in this area, since the Lower Miocene was not deposited in this area. Thus, it was possible to model the base Middle Miocene in this area without mixing the Miocene units.



Figure 10: Comparison of the German models with their depth position; left: 03_tmim_tpl from GTA3D; right: remodelled "Nordhorn area". Black spots show areas of no harmonization.

A comparison of the two German models (Fig. 10) shows that the recalculated model is more detailed and that the model fits better with the Dutch model. The histogram shows the differences in depth compared to the Dutch model (Fig. 11) and whether the difference has been reduced.



Figure 11: Comparison of the histograms of the depth differences between DE and NL for the remodelled "Nordhorn area" (pink) and the GTA3D (blue).

The histogram shows a reduction of the depth differences between the German and the Dutch model.





#### 1.3.2 BASE OLIGOCENE / RUPEL FORMATION

During the remodelling of Base Rupel FM, local changes in thickness and the distribution limit of the deposits were modelled in detail. Especially the faults and graben structures have an enormous influence on the depth of the Rupel FM.



Figure 12: Comparison of the German models with their depth position; left: 05_tolm-tolo from GTA3D; right: remodelled "Nordhorn area". Black spots show areas of no harmonization.

The comparison of the two German models (Figure 12) shows that the new model provides much more detailed depth information than the GTA3D layers.

Comparing the histograms, which show the differences in depth between the German and Dutch models (Figure 13), it becomes clear that the remodelled surface matches the Dutch ones much better and represent a significant improvement.



Figure 13: Comparison of the histograms of the depth differences between DE and NL for the remodelled "Nordhorn area" (blue) and the GTA3D (green).





## 1.4 STRATIGRAPHIC CHART OF THE CROSS BORDER AREA

Age (Ma	je Aa) System Series Stages		Stages	Lithostratigraphy according Van Adrichem Boogaert & Kouwe (1993 - 1997)	remodelled /	DGM deep	DGM-NNI	NLS3D	
0 		Quaternary Neogene	Pleistocene Pliccene Miocene	Celesian Pacenzan Zenceen Mmileran Tortonien Sezravallian Lenghien	Upper North Sea Group – NU	Near base Lower/Middle Miocene	Base NUBA - Breda		Near Lower/ Middle Miocene boundary
20-	ZOIC	Paleogene	Oligocene	Burdigstan Aquitanian Chattian Bunelian	Middle North Sea Group – NM	Base Rupel		Base Rupel Formation	Near base Rupelian
- 40 - - 50 -	CENO		Eocene	Priabonian Bartonian Lutetian	Lower North Sea Group – NL	Mitteleozän- Unteroligozän		Base Brussel Sand Member	Near base Middle Eocene
60 -			Paleocene	Ypresian Thenetian Selandian Danian		Oberpaläozän- Untereozän	Base NL		Near base Cenozoic
70 - 80 - 90 -			Upper	Maastrichtian Campanian Santonian Coniacian Turonian Cenomanian	Chalk Group – CK	Oberkreide	Base CK		Base Upper Cretaceous
100- 		Cretace ous	Lower	Albian Aptian Barremian Hauterivian Valanginian Ryazanian	Rijnland Group – KN	Marine Unterkreide	Base KN		Near base Lower Cretaceous
150- - 160-	SOZOIC		Upper	Kimmeridgian Oxfordian	SL SG, SK, SL	Oberjura und Wealden	Base S		Near base Upper Jurassic
170-	ME	Jurassic	Middle	Callovian Bathonian Bajocian Aalenian	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
180- - 190- -			Lower	Toarcian Pliensbachian Sinemurian Hettangian	Altena Group – AT	Unterjura	Base AT		Near base Lower Jurassic
200- 210- 220-			Upper N	Rhaetian Norian	Upper Germanic Trias Group – RN				
230- - 240-		Middle	Middle	Carnian Ladinian Anisian			Dece DN		Near base
250-			Lower	Olenekian	Lower Germanic Trias Group – RB	U.+ M. Buntsandstein	Base RB		Widdle Massic
-			Lopingian	Wuchiapingian	Zechstein Group – ZE				Near base
260-			Guadalupian	Capitanian Wordian Roedian	Upper Rotliegend Group – RO				' Lower Triassic
- 280- - 290-		Permian	Cisuralian	Artinskian Sakmarian	Lower Rollingend Group - RV				
200	S			Asselian					
- 300	OZO			Stephanian					
310-	PALE		Silesian	Westphalian	Limburg Group – DC				
330- 340-		Carboni- ferous	Dinantian	Visean	Carboniferous Limestone Group – CL				
350-				Tournaisian					

## The ten harmonized horizons are indicated in Figure 14 to show the stratigraphic overview.

Figure 14: Correlation of modelled horizons for GTA3D and remodelled (green lines), DGM deep (red lines), DGM NNL (blue lines) and NLS3D (yellow lines) with names of the modelled horizons (mod. after Kombrink et al., 2012).





## 1.5 **Faults**

Although an initial goal of this project, faults in the border area have not been harmonized. An attempt has been made to harmonize the Gronau fault-zone. This fault-zone has been chosen because of its complexity and a working proof of concept would mean a working method for the entire border area.

Unfortunately, the basis for a harmonized fault model is thin. There is no fault model present in the German GTA3D model. For the faults on the German side of the border reconstructed fault planes deduced from fault-gaps would have to be made that could serve as a fault model surrogate. Not only would this be a laborious activity, it would also result in a sub-par fault model and an unsatisfactory harmonized cross-border fault model.

## 1.6 INTERSECTIONS OF HORIZONS WITH NEAR BASE RUPELIAN

Local intersections in the Cenozoic units occur when comparing the Near Base Rupelian with the units above and below it. In some areas, the depth of the Near Base Rupelian horizon is lower than that of the Near Base Lower/Middle Miocene horizon (see Figure 15).



Figure 15: View of occurring intersections between Near Base Rupelian (beige) and Near base Lower/Middle Miocene (orange).

The most important reason for this overlap is that different input models have been used, which differ significantly in their resolution, type of input data, etc. Another reason is that horizons from DGM-NNL model (Base NMRF - Rupel - Formation and Base NLFSS - Brussels Sand Member) are present at locations above saltdomes, although interpretations for these horizons show no occurrence above saltdomes.

The horizons generated in the 3D input models or modelling methods used are not aligned with each other. When calculating thickness maps for Cenozoic units from NLS3D (Deliverable 1.3 of this work package), these overlaps create gaps. As a result, the distribution of the Cenozoic units is partially incompletely represented.





## 2 LESSONS LEARNED

Existing 3D models end at national borders, but geological sediments or structures are not correlated with national borders. By comparing the 3D models at both sides of the border a methodology for harmonization has been developed. During this harmonisation process the following lessons have been learned:

- In general the 3D models fit better as expected.
- Horizons based on seismic picked horizons fit better, than horizons only based on a few wells.
- Data gaps or areas with low density of input data towards the border of the model lead to fuzziness and generate deviations due to uncertainty. These data gaps may have a reason in the circumstances, that data exchange with Germany was not possible in former times.
- Some horizons fit very well, because these horizons are characterized by prominent reflectors, which are strongly formed and can be traced over several tens of kilometres in seismic datasets.
- Differences in depth and/or in structure, which exceed the threshold for harmonization, result in areas, which cannot be harmonized.
- Different interpretations of the sediments in boreholes are used, this lead to misinterpretations of the layers/horizons. For example strongly generalized layer descriptions in boreholes (like North Sea Super Group) might result in invisibleness of geological units during automatic interpretation.
- Changes in the stratigraphic classification and assignment of individual sediments to certain chronostratigraphic stages over the last 70 years led to the fact that in some cases the horizons from boreholes were assigned to the wrong horizons during modelling.
- Vulnerability of the method for harmonizing corresponding horizons the method was designed to be able to map and compensate the expected high deviation of the deepest horizons very well. Contrary to expectations, the shallowest horizons showed the greatest deviation in the harmonization in relation to the depth.
- It is not possible to harmonize the faults from these 3D models, due to the fact that the Dutch 3D model has interpreted and modelled fault-planes in 3D and the fault planes at the GTA3D model had to be reconstructed and deduced from fault-gaps at horizon levels.
- By comparison of the national stratigraphic charts a separate, transnational stratigraphic classification has been developed, which is perhaps only valid for the model area.
- Intersection problems occurring because of usage of layers from different models To create a harmonized 3D model without gaps, it is inevitably necessary to start again with the raw data. First of all, the raw data must be harmonized, especially with regard to structural features such as faults and salt domes. Then the harmonized raw data can be implemented in a new 3D model.





#### **3** LIST OF REFERENCES

BGR 2021. TUNB-3D-Model des Norddeutschen Beckens. <u>https://gst.bgr.de/shortlink/tunb</u>.2021

- Doornenbal, J.C., Abbink, O.A., Duin, E.J.T., Dusar, M., Hoth, P., Jasionowski, M., Lott, G.K., Mathiesen, A., Papiernik, B., Peryt, T.M., Veldkamp, J.G. & Wirth, H., 2010. Introduction, stratigraphic framework and mapping. In: Doornenbal, J.C. and Stevenson, A.G. (Eds): Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v. (Houten): 1-9.
- Doornenbal, J.C. and Stevenson, A.G. (editors), 2010. Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v. (Houten). ISBN 978-90-73781-61-0.
- Kombrink, H., Doornenbal, J. C., Duin, E. J., den Bulk, M., van Gessel, S., ten Veen, J. H., & Witmans, N., 2012. New insights into the geological structure of the Netherlands; results of a detailed mapping project. Netherlands Journal of Geosciences - Geologie en Mijnbouw, 91-4, S. 419-446.
- Witthöft, M., Breuer, S., Doornenbal, J.C., Kruisselbrink, A.F., 2018. Inventory report. EU funded project GeoERA, 3DGEO-EU, WP1. recalled at 20.04.2021 at <u>https://geoera.eu/3DGEO-files/3DGEO-EU-D1.1-Inventory-report.pdf</u>